PrusaSlicer-NonPlainar/src/libslic3r/Arrange.cpp

806 lines
27 KiB
C++
Raw Normal View History

2019-07-01 16:22:07 +00:00
#include "Arrange.hpp"
#include "Geometry.hpp"
2018-11-12 13:52:52 +00:00
#include "SVG.hpp"
#include "MTUtils.hpp"
2018-11-12 13:52:52 +00:00
2019-06-28 15:03:50 +00:00
#include <libnest2d/backends/clipper/geometries.hpp>
#include <libnest2d/optimizers/nlopt/subplex.hpp>
#include <libnest2d/placers/nfpplacer.hpp>
#include <libnest2d/selections/firstfit.hpp>
2018-11-12 13:52:52 +00:00
#include <numeric>
#include <ClipperUtils.hpp>
#include <boost/geometry/index/rtree.hpp>
#include <boost/multiprecision/integer.hpp>
#include <boost/rational.hpp>
namespace libnest2d {
#if !defined(_MSC_VER) && defined(__SIZEOF_INT128__) && !defined(__APPLE__)
using LargeInt = __int128;
#else
using LargeInt = boost::multiprecision::int128_t;
2019-06-28 15:03:50 +00:00
template<> struct _NumTag<LargeInt>
{
using Type = ScalarTag;
};
#endif
2019-06-28 15:03:50 +00:00
template<class T> struct _NumTag<boost::rational<T>>
{
using Type = RationalTag;
};
namespace nfp {
2019-06-28 15:03:50 +00:00
template<class S> struct NfpImpl<S, NfpLevel::CONVEX_ONLY>
{
NfpResult<S> operator()(const S &sh, const S &other)
{
return nfpConvexOnly<S, boost::rational<LargeInt>>(sh, other);
}
};
2019-06-28 15:03:50 +00:00
} // namespace nfp
} // namespace libnest2d
2018-11-12 13:52:52 +00:00
namespace Slic3r {
2019-07-01 16:22:07 +00:00
template<class Tout = double, class = FloatingOnly<Tout>>
inline SLIC3R_CONSTEXPR EigenVec<Tout, 2> unscaled(
const ClipperLib::IntPoint &v) SLIC3R_NOEXCEPT
{
return EigenVec<Tout, 2>{unscaled<Tout>(v.X), unscaled<Tout>(v.Y)};
}
namespace arrangement {
2018-11-12 13:52:52 +00:00
using namespace libnest2d;
2019-06-28 15:03:50 +00:00
namespace clppr = ClipperLib;
2018-11-12 13:52:52 +00:00
2019-06-28 15:03:50 +00:00
using Item = _Item<clppr::Polygon>;
using Box = _Box<clppr::IntPoint>;
using Circle = _Circle<clppr::IntPoint>;
using Segment = _Segment<clppr::IntPoint>;
using MultiPolygon = TMultiShape<clppr::Polygon>;
using PackGroup = _PackGroup<clppr::Polygon>;
2019-06-27 19:13:44 +00:00
2019-01-21 09:34:10 +00:00
// Only for debugging. Prints the model object vertices on stdout.
//std::string toString(const Model& model, bool holes = true) {
// std::stringstream ss;
2018-11-12 13:52:52 +00:00
// ss << "{\n";
2018-11-12 13:52:52 +00:00
// for(auto objptr : model.objects) {
// if(!objptr) continue;
2018-11-12 13:52:52 +00:00
// auto rmesh = objptr->raw_mesh();
2018-11-12 13:52:52 +00:00
// for(auto objinst : objptr->instances) {
// if(!objinst) continue;
2018-11-12 13:52:52 +00:00
// Slic3r::TriangleMesh tmpmesh = rmesh;
// // CHECK_ME -> Is the following correct ?
// tmpmesh.scale(objinst->get_scaling_factor());
// objinst->transform_mesh(&tmpmesh);
// ExPolygons expolys = tmpmesh.horizontal_projection();
// for(auto& expoly_complex : expolys) {
2019-06-26 09:10:41 +00:00
// ExPolygons tmp = expoly_complex.simplify(scaled<double>(1.));
// if(tmp.empty()) continue;
// ExPolygon expoly = tmp.front();
// expoly.contour.make_clockwise();
// for(auto& h : expoly.holes) h.make_counter_clockwise();
// ss << "\t{\n";
// ss << "\t\t{\n";
// for(auto v : expoly.contour.points) ss << "\t\t\t{"
// << v(0) << ", "
// << v(1) << "},\n";
// {
// auto v = expoly.contour.points.front();
// ss << "\t\t\t{" << v(0) << ", " << v(1) << "},\n";
// }
// ss << "\t\t},\n";
// // Holes:
// ss << "\t\t{\n";
// if(holes) for(auto h : expoly.holes) {
// ss << "\t\t\t{\n";
// for(auto v : h.points) ss << "\t\t\t\t{"
// << v(0) << ", "
// << v(1) << "},\n";
// {
// auto v = h.points.front();
// ss << "\t\t\t\t{" << v(0) << ", " << v(1) << "},\n";
// }
// ss << "\t\t\t},\n";
// }
// ss << "\t\t},\n";
// ss << "\t},\n";
// }
// }
// }
// ss << "}\n";
// return ss.str();
//}
2018-11-12 13:52:52 +00:00
2019-01-21 09:34:10 +00:00
// Debugging: Save model to svg file.
//void toSVG(SVG& svg, const Model& model) {
// for(auto objptr : model.objects) {
// if(!objptr) continue;
2018-11-12 13:52:52 +00:00
// auto rmesh = objptr->raw_mesh();
2018-11-12 13:52:52 +00:00
// for(auto objinst : objptr->instances) {
// if(!objinst) continue;
2018-11-12 13:52:52 +00:00
// Slic3r::TriangleMesh tmpmesh = rmesh;
// tmpmesh.scale(objinst->get_scaling_factor());
// objinst->transform_mesh(&tmpmesh);
// ExPolygons expolys = tmpmesh.horizontal_projection();
// svg.draw(expolys);
// }
// }
//}
2018-11-12 13:52:52 +00:00
namespace bgi = boost::geometry::index;
using SpatElement = std::pair<Box, unsigned>;
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
2019-06-28 15:03:50 +00:00
using ItemGroup = std::vector<std::reference_wrapper<Item>>;
2018-11-12 13:52:52 +00:00
const double BIG_ITEM_TRESHOLD = 0.02;
Box boundingBox(const Box& pilebb, const Box& ibb ) {
auto& pminc = pilebb.minCorner();
auto& pmaxc = pilebb.maxCorner();
auto& iminc = ibb.minCorner();
auto& imaxc = ibb.maxCorner();
PointImpl minc, maxc;
setX(minc, std::min(getX(pminc), getX(iminc)));
setY(minc, std::min(getY(pminc), getY(iminc)));
setX(maxc, std::max(getX(pmaxc), getX(imaxc)));
setY(maxc, std::max(getY(pmaxc), getY(imaxc)));
return Box(minc, maxc);
}
2019-01-21 09:34:10 +00:00
// This is "the" object function which is evaluated many times for each vertex
// (decimated with the accuracy parameter) of each object. Therefore it is
// upmost crucial for this function to be as efficient as it possibly can be but
// at the same time, it has to provide reasonable results.
2018-11-12 13:52:52 +00:00
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
objfunc(const PointImpl& bincenter,
2019-06-28 15:03:50 +00:00
const MultiPolygon& merged_pile,
2018-11-12 13:52:52 +00:00
const Box& pilebb,
const ItemGroup& items,
2019-06-28 15:03:50 +00:00
const Item &item,
2018-11-12 13:52:52 +00:00
double bin_area,
double norm, // A norming factor for physical dimensions
// a spatial index to quickly get neighbors of the candidate item
const SpatIndex& spatindex,
const SpatIndex& smalls_spatindex,
const ItemGroup& remaining
)
{
// We will treat big items (compared to the print bed) differently
auto isBig = [bin_area](double a) {
return a/bin_area > BIG_ITEM_TRESHOLD ;
};
// Candidate item bounding box
auto ibb = sl::boundingBox(item.transformedShape());
// Calculate the full bounding box of the pile with the candidate item
auto fullbb = boundingBox(pilebb, ibb);
// The bounding box of the big items (they will accumulate in the center
// of the pile
Box bigbb;
if(spatindex.empty()) bigbb = fullbb;
else {
auto boostbb = spatindex.bounds();
boost::geometry::convert(boostbb, bigbb);
}
// Will hold the resulting score
double score = 0;
if(isBig(item.area()) || spatindex.empty()) {
// This branch is for the bigger items..
auto minc = ibb.minCorner(); // bottom left corner
auto maxc = ibb.maxCorner(); // top right corner
// top left and bottom right corners
auto top_left = PointImpl{getX(minc), getY(maxc)};
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
// Now the distance of the gravity center will be calculated to the
// five anchor points and the smallest will be chosen.
std::array<double, 5> dists;
auto cc = fullbb.center(); // The gravity center
dists[0] = pl::distance(minc, cc);
dists[1] = pl::distance(maxc, cc);
dists[2] = pl::distance(ibb.center(), cc);
dists[3] = pl::distance(top_left, cc);
dists[4] = pl::distance(bottom_right, cc);
// The smalles distance from the arranged pile center:
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
auto bindist = pl::distance(ibb.center(), bincenter) / norm;
dist = 0.8*dist + 0.2*bindist;
// Density is the pack density: how big is the arranged pile
double density = 0;
if(remaining.empty()) {
auto mp = merged_pile;
mp.emplace_back(item.transformedShape());
auto chull = sl::convexHull(mp);
2019-06-28 15:03:50 +00:00
placers::EdgeCache<clppr::Polygon> ec(chull);
2018-11-12 13:52:52 +00:00
double circ = ec.circumference() / norm;
double bcirc = 2.0*(fullbb.width() + fullbb.height()) / norm;
score = 0.5*circ + 0.5*bcirc;
} else {
// Prepare a variable for the alignment score.
// This will indicate: how well is the candidate item aligned with
// its neighbors. We will check the alignment with all neighbors and
// return the score for the best alignment. So it is enough for the
// candidate to be aligned with only one item.
auto alignment_score = 1.0;
density = std::sqrt((fullbb.width() / norm )*
(fullbb.height() / norm));
auto querybb = item.boundingBox();
// Query the spatial index for the neighbors
std::vector<SpatElement> result;
result.reserve(spatindex.size());
if(isBig(item.area())) {
spatindex.query(bgi::intersects(querybb),
std::back_inserter(result));
} else {
smalls_spatindex.query(bgi::intersects(querybb),
std::back_inserter(result));
}
for(auto& e : result) { // now get the score for the best alignment
auto idx = e.second;
2019-06-28 15:03:50 +00:00
Item& p = items[idx];
2018-11-12 13:52:52 +00:00
auto parea = p.area();
if(std::abs(1.0 - parea/item.area()) < 1e-6) {
auto bb = boundingBox(p.boundingBox(), ibb);
auto bbarea = bb.area();
auto ascore = 1.0 - (item.area() + parea)/bbarea;
if(ascore < alignment_score) alignment_score = ascore;
}
}
// The final mix of the score is the balance between the distance
// from the full pile center, the pack density and the
// alignment with the neighbors
if(result.empty())
score = 0.5 * dist + 0.5 * density;
else
score = 0.40 * dist + 0.40 * density + 0.2 * alignment_score;
}
} else {
// Here there are the small items that should be placed around the
// already processed bigger items.
// No need to play around with the anchor points, the center will be
// just fine for small items
score = pl::distance(ibb.center(), bigbb.center()) / norm;
}
return std::make_tuple(score, fullbb);
}
2019-01-21 09:34:10 +00:00
// Fill in the placer algorithm configuration with values carefully chosen for
// Slic3r.
2018-11-12 13:52:52 +00:00
template<class PConf>
void fillConfig(PConf& pcfg) {
// Align the arranged pile into the center of the bin
pcfg.alignment = PConf::Alignment::CENTER;
// Start placing the items from the center of the print bed
pcfg.starting_point = PConf::Alignment::CENTER;
// TODO cannot use rotations until multiple objects of same geometry can
// handle different rotations
// arranger.useMinimumBoundigBoxRotation();
pcfg.rotations = { 0.0 };
// The accuracy of optimization.
// Goes from 0.0 to 1.0 and scales performance as well
pcfg.accuracy = 0.65f;
pcfg.parallel = true;
}
2019-01-21 09:34:10 +00:00
// Type trait for an arranger class for different bin types (box, circle,
// polygon, etc...)
2018-11-12 13:52:52 +00:00
template<class TBin>
class AutoArranger {};
2019-01-21 09:34:10 +00:00
// A class encapsulating the libnest2d Nester class and extending it with other
// management and spatial index structures for acceleration.
2018-11-12 13:52:52 +00:00
template<class TBin>
class _ArrBase {
2019-06-19 10:04:11 +00:00
public:
2019-01-21 09:34:10 +00:00
// Useful type shortcuts...
2019-06-28 15:03:50 +00:00
using Placer = typename placers::_NofitPolyPlacer<clppr::Polygon, TBin>;
using Selector = selections::_FirstFitSelection<clppr::Polygon>;
2019-07-02 08:32:01 +00:00
using Packer = Nester<Placer, Selector>;
using PConfig = typename Packer::PlacementConfig;
2018-11-12 13:52:52 +00:00
using Distance = TCoord<PointImpl>;
2019-07-02 08:32:01 +00:00
protected:
Packer m_pck;
PConfig m_pconf; // Placement configuration
double m_bin_area;
SpatIndex m_rtree; // spatial index for the normal (bigger) objects
2019-01-21 09:34:10 +00:00
SpatIndex m_smallsrtree; // spatial index for only the smaller items
2019-07-02 08:32:01 +00:00
double m_norm; // A coefficient to scale distances
2019-06-28 15:03:50 +00:00
MultiPolygon m_merged_pile; // The already merged pile (vector of items)
2019-07-02 08:32:01 +00:00
Box m_pilebb; // The bounding box of the merged pile.
ItemGroup m_remaining; // Remaining items (m_items at the beginning)
ItemGroup m_items; // The items to be packed
2018-11-12 13:52:52 +00:00
public:
_ArrBase(const TBin& bin, Distance dist,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcond):
m_pck(bin, dist), m_bin_area(sl::area(bin)),
2019-07-01 16:22:07 +00:00
m_norm(std::sqrt(m_bin_area))
2018-11-12 13:52:52 +00:00
{
fillConfig(m_pconf);
2019-01-21 09:34:10 +00:00
// Set up a callback that is called just before arranging starts
// This functionality is provided by the Nester class (m_pack).
2018-11-12 13:52:52 +00:00
m_pconf.before_packing =
2019-06-28 15:03:50 +00:00
[this](const MultiPolygon& merged_pile, // merged pile
2018-11-12 13:52:52 +00:00
const ItemGroup& items, // packed items
const ItemGroup& remaining) // future items to be packed
{
m_items = items;
m_merged_pile = merged_pile;
m_remaining = remaining;
m_pilebb = sl::boundingBox(merged_pile);
m_rtree.clear();
m_smallsrtree.clear();
// We will treat big items (compared to the print bed) differently
auto isBig = [this](double a) {
return a/m_bin_area > BIG_ITEM_TRESHOLD ;
};
for(unsigned idx = 0; idx < items.size(); ++idx) {
2019-06-28 15:03:50 +00:00
Item& itm = items[idx];
2018-11-12 13:52:52 +00:00
if(isBig(itm.area())) m_rtree.insert({itm.boundingBox(), idx});
m_smallsrtree.insert({itm.boundingBox(), idx});
}
};
2019-07-01 16:22:07 +00:00
if (progressind) m_pck.progressIndicator(progressind);
if (stopcond) m_pck.stopCondition(stopcond);
2018-11-12 13:52:52 +00:00
}
2019-06-27 19:13:44 +00:00
2019-06-28 15:03:50 +00:00
template<class...Args> inline PackGroup operator()(Args&&...args) {
2018-11-12 13:52:52 +00:00
m_rtree.clear();
2019-06-27 19:13:44 +00:00
return m_pck.execute(std::forward<Args>(args)...);
2018-11-12 13:52:52 +00:00
}
2019-06-27 19:13:44 +00:00
2019-06-28 15:03:50 +00:00
inline void preload(const PackGroup& pg) {
m_pconf.alignment = PConfig::Alignment::DONT_ALIGN;
m_pconf.object_function = nullptr; // drop the special objectfunction
m_pck.preload(pg);
// Build the rtree for queries to work
for(const ItemGroup& grp : pg)
for(unsigned idx = 0; idx < grp.size(); ++idx) {
2019-06-28 15:03:50 +00:00
Item& itm = grp[idx];
m_rtree.insert({itm.boundingBox(), idx});
}
m_pck.configure(m_pconf);
}
2019-06-28 15:03:50 +00:00
bool is_colliding(const Item& item) {
if(m_rtree.empty()) return false;
std::vector<SpatElement> result;
m_rtree.query(bgi::intersects(item.boundingBox()),
std::back_inserter(result));
return !result.empty();
}
2018-11-12 13:52:52 +00:00
};
2019-01-21 09:34:10 +00:00
// Arranger specialization for a Box shaped bin.
template<> class AutoArranger<Box>: public _ArrBase<Box> {
2018-11-12 13:52:52 +00:00
public:
AutoArranger(const Box& bin, Distance dist,
std::function<void(unsigned)> progressind = [](unsigned){},
std::function<bool(void)> stopcond = [](){return false;}):
2018-11-12 13:52:52 +00:00
_ArrBase<Box>(bin, dist, progressind, stopcond)
{
2019-01-21 09:34:10 +00:00
// Here we set up the actual object function that calls the common
// object function for all bin shapes than does an additional inside
// check for the arranged pile.
2019-06-28 15:03:50 +00:00
m_pconf.object_function = [this, bin] (const Item &item) {
2018-11-12 13:52:52 +00:00
auto result = objfunc(bin.center(),
m_merged_pile,
m_pilebb,
m_items,
item,
m_bin_area,
m_norm,
m_rtree,
m_smallsrtree,
m_remaining);
double score = std::get<0>(result);
auto& fullbb = std::get<1>(result);
double miss = Placer::overfit(fullbb, bin);
miss = miss > 0? miss : 0;
score += miss*miss;
return score;
};
m_pck.configure(m_pconf);
}
};
2019-06-28 15:03:50 +00:00
inline Circle to_lnCircle(const CircleBed& circ) {
return Circle({circ.center()(0), circ.center()(1)}, circ.radius());
2018-11-12 13:52:52 +00:00
}
2019-01-21 09:34:10 +00:00
// Arranger specialization for circle shaped bin.
2019-06-28 15:03:50 +00:00
template<> class AutoArranger<Circle>: public _ArrBase<Circle> {
2018-11-12 13:52:52 +00:00
public:
2019-06-28 15:03:50 +00:00
AutoArranger(const Circle& bin, Distance dist,
std::function<void(unsigned)> progressind = [](unsigned){},
std::function<bool(void)> stopcond = [](){return false;}):
2019-06-28 15:03:50 +00:00
_ArrBase<Circle>(bin, dist, progressind, stopcond) {
2018-11-12 13:52:52 +00:00
2019-01-21 09:34:10 +00:00
// As with the box, only the inside check is different.
2019-06-28 15:03:50 +00:00
m_pconf.object_function = [this, &bin] (const Item &item) {
2018-11-12 13:52:52 +00:00
auto result = objfunc(bin.center(),
m_merged_pile,
m_pilebb,
m_items,
item,
m_bin_area,
m_norm,
m_rtree,
m_smallsrtree,
m_remaining);
double score = std::get<0>(result);
2019-06-28 15:03:50 +00:00
auto isBig = [this](const Item& itm) {
2018-11-12 13:52:52 +00:00
return itm.area()/m_bin_area > BIG_ITEM_TRESHOLD ;
};
if(isBig(item)) {
auto mp = m_merged_pile;
mp.push_back(item.transformedShape());
auto chull = sl::convexHull(mp);
double miss = Placer::overfit(chull, bin);
if(miss < 0) miss = 0;
score += miss*miss;
}
return score;
};
m_pck.configure(m_pconf);
}
};
2019-01-21 09:34:10 +00:00
// Arranger specialization for a generalized polygon.
// Warning: this is unfinished business. It may or may not work.
template<> class AutoArranger<PolygonImpl>: public _ArrBase<PolygonImpl> {
2018-11-12 13:52:52 +00:00
public:
AutoArranger(const PolygonImpl& bin, Distance dist,
std::function<void(unsigned)> progressind = [](unsigned){},
std::function<bool(void)> stopcond = [](){return false;}):
2018-11-12 13:52:52 +00:00
_ArrBase<PolygonImpl>(bin, dist, progressind, stopcond)
{
2019-06-28 15:03:50 +00:00
m_pconf.object_function = [this, &bin] (const Item &item) {
2018-11-12 13:52:52 +00:00
auto binbb = sl::boundingBox(bin);
auto result = objfunc(binbb.center(),
m_merged_pile,
m_pilebb,
m_items,
item,
m_bin_area,
m_norm,
m_rtree,
m_smallsrtree,
m_remaining);
double score = std::get<0>(result);
return score;
};
m_pck.configure(m_pconf);
}
};
2019-01-21 09:34:10 +00:00
// Get the type of bed geometry from a simple vector of points.
2018-11-12 13:52:52 +00:00
BedShapeHint bedShape(const Polyline &bed) {
BedShapeHint ret;
2019-06-28 15:03:50 +00:00
auto x = [](const Point& p) { return p(X); };
auto y = [](const Point& p) { return p(Y); };
2018-11-12 13:52:52 +00:00
auto width = [x](const BoundingBox& box) {
return x(box.max) - x(box.min);
};
auto height = [y](const BoundingBox& box) {
return y(box.max) - y(box.min);
};
auto area = [&width, &height](const BoundingBox& box) {
double w = width(box);
double h = height(box);
2019-06-28 15:03:50 +00:00
return w * h;
2018-11-12 13:52:52 +00:00
};
auto poly_area = [](Polyline p) {
Polygon pp; pp.points.reserve(p.points.size() + 1);
pp.points = std::move(p.points);
pp.points.emplace_back(pp.points.front());
return std::abs(pp.area());
};
auto distance_to = [x, y](const Point& p1, const Point& p2) {
double dx = x(p2) - x(p1);
double dy = y(p2) - y(p1);
return std::sqrt(dx*dx + dy*dy);
};
auto bb = bed.bounding_box();
auto isCircle = [bb, distance_to](const Polyline& polygon) {
auto center = bb.center();
std::vector<double> vertex_distances;
double avg_dist = 0;
for (auto pt: polygon.points)
{
double distance = distance_to(center, pt);
vertex_distances.push_back(distance);
avg_dist += distance;
}
avg_dist /= vertex_distances.size();
2019-06-28 15:03:50 +00:00
CircleBed ret(center, avg_dist);
for(auto el : vertex_distances)
2018-11-12 13:52:52 +00:00
{
if (std::abs(el - avg_dist) > 10 * SCALED_EPSILON) {
2019-06-28 15:03:50 +00:00
ret = CircleBed();
break;
}
2018-11-12 13:52:52 +00:00
}
return ret;
};
auto parea = poly_area(bed);
if( (1.0 - parea/area(bb)) < 1e-3 ) {
ret.type = BedShapeType::BOX;
ret.shape.box = bb;
}
else if(auto c = isCircle(bed)) {
ret.type = BedShapeType::CIRCLE;
ret.shape.circ = c;
} else {
ret.type = BedShapeType::IRREGULAR;
ret.shape.polygon = bed;
}
// Determine the bed shape by hand
return ret;
}
2019-06-27 19:13:44 +00:00
template<class BinT>
PackGroup _arrange(std::vector<Item> & shapes,
const PackGroup & preshapes,
2019-06-28 15:03:50 +00:00
const BinT & bin,
coord_t minobjd,
std::function<void(unsigned)> prind,
std::function<bool()> stopfn)
2019-07-01 16:22:07 +00:00
{
AutoArranger<BinT> arranger{bin, minobjd, prind, stopfn};
2019-07-01 16:22:07 +00:00
// If there is something on the plate
if(!preshapes.empty() && !preshapes.front().empty()) {
arranger.preload(preshapes);
2019-07-01 16:22:07 +00:00
auto binbb = sl::boundingBox(bin);
// Try to put the first item to the center, as the arranger will not
// do this for us.
2019-07-01 16:22:07 +00:00
for (auto it = shapes.begin(); it != shapes.end(); ++it) {
Item &itm = *it;
auto ibb = itm.boundingBox();
auto d = binbb.center() - ibb.center();
itm.translate(d);
if (!arranger.is_colliding(itm)) {
arranger.preload({{itm}});
2019-07-01 16:22:07 +00:00
// Write the transformation data into the item. The callback
// was set on the instantiation of Item and calls the
// Arrangeable interface.
it->callApplyFunction(0);
2019-07-01 16:22:07 +00:00
// Remove this item, as it is arranged now
it = shapes.erase(it);
break;
}
}
}
return arranger(shapes.begin(), shapes.end());
}
2019-06-27 19:13:44 +00:00
inline SLIC3R_CONSTEXPR coord_t stride_padding(coord_t w)
{
return w + w / 5;
}
2019-06-28 15:03:50 +00:00
//// The final client function to arrange the Model. A progress indicator and
//// a stop predicate can be also be passed to control the process.
2019-07-01 16:22:07 +00:00
bool arrange(ArrangeablePtrs & arrangables,
const ArrangeablePtrs & excludes,
2019-06-27 19:13:44 +00:00
coord_t min_obj_distance,
const BedShapeHint & bedhint,
2019-06-27 19:13:44 +00:00
std::function<void(unsigned)> progressind,
std::function<bool()> stopcondition)
{
bool ret = true;
2019-06-28 15:03:50 +00:00
namespace clppr = ClipperLib;
std::vector<Item> items, excluded_items;
2019-06-28 15:03:50 +00:00
items.reserve(arrangables.size());
coord_t binwidth = 0;
2019-06-27 19:13:44 +00:00
PackGroup preshapes{ {} }; // pack group with one initial bin for preloading
auto process_arrangeable =
2019-07-01 16:22:07 +00:00
[](const Arrangeable * arrangeable,
std::vector<Item> & outp,
std::function<void(const Item &, unsigned)> applyfn)
{
2019-07-01 16:22:07 +00:00
assert(arrangeable);
2019-07-01 16:22:07 +00:00
auto arrangeitem = arrangeable->get_arrange_polygon();
2019-07-01 16:22:07 +00:00
Polygon & p = std::get<0>(arrangeitem);
const Vec2crd &offs = std::get<1>(arrangeitem);
double rotation = std::get<2>(arrangeitem);
2019-07-01 16:22:07 +00:00
if (p.is_counter_clockwise()) p.reverse();
2019-06-28 15:03:50 +00:00
2019-07-01 16:22:07 +00:00
clppr::Polygon clpath(Slic3rMultiPoint_to_ClipperPath(p));
2019-07-01 16:22:07 +00:00
auto firstp = clpath.Contour.front();
clpath.Contour.emplace_back(firstp);
2019-07-01 16:22:07 +00:00
outp.emplace_back(applyfn, std::move(clpath));
2019-07-02 08:32:01 +00:00
outp.back().rotation(rotation);
outp.back().translation({offs.x(), offs.y()});
2019-07-01 16:22:07 +00:00
};
for (Arrangeable *arrangeable : arrangables) {
process_arrangeable(
arrangeable,
items,
2019-06-28 15:03:50 +00:00
// callback called by arrange to apply the result on the arrangeable
[arrangeable, &binwidth](const Item &itm, unsigned binidx) {
clppr::cInt stride = binidx * stride_padding(binwidth);
clppr::IntPoint offs = itm.translation();
2019-07-01 16:22:07 +00:00
arrangeable->apply_arrange_result({unscaled(offs.X + stride),
2019-06-28 15:03:50 +00:00
unscaled(offs.Y)},
itm.rotation());
});
2019-06-27 19:13:44 +00:00
}
for (const Arrangeable * fixed: excludes)
process_arrangeable(fixed, excluded_items, nullptr);
for(Item& excl : excluded_items) preshapes.front().emplace_back(excl);
2019-06-27 19:13:44 +00:00
// Integer ceiling the min distance from the bed perimeters
coord_t md = min_obj_distance - SCALED_EPSILON;
md = (md % 2) ? md / 2 + 1 : md / 2;
auto& cfn = stopcondition;
2019-06-27 19:13:44 +00:00
switch (bedhint.type) {
case BedShapeType::BOX: {
// Create the arranger for the box shaped bed
BoundingBox bbb = bedhint.shape.box;
2019-06-28 15:03:50 +00:00
bbb.min -= Point{md, md}, bbb.max += Point{md, md};
Box binbb{{bbb.min(X), bbb.min(Y)}, {bbb.max(X), bbb.max(Y)}};
2019-06-27 19:13:44 +00:00
binwidth = coord_t(binbb.width());
2019-06-28 15:03:50 +00:00
_arrange(items, preshapes, binbb, min_obj_distance, progressind, cfn);
2019-06-27 19:13:44 +00:00
break;
}
case BedShapeType::CIRCLE: {
auto c = bedhint.shape.circ;
auto cc = to_lnCircle(c);
binwidth = scaled(c.radius());
2019-07-01 16:22:07 +00:00
_arrange(items, preshapes, cc, min_obj_distance, progressind, cfn);
2019-06-27 19:13:44 +00:00
break;
}
case BedShapeType::IRREGULAR: {
auto ctour = Slic3rMultiPoint_to_ClipperPath(bedhint.shape.polygon);
2019-06-28 15:03:50 +00:00
auto irrbed = sl::create<clppr::Polygon>(std::move(ctour));
2019-06-27 19:13:44 +00:00
BoundingBox polybb(bedhint.shape.polygon);
binwidth = (polybb.max(X) - polybb.min(X));
2019-07-01 16:22:07 +00:00
_arrange(items, preshapes, irrbed, min_obj_distance, progressind, cfn);
2019-06-27 19:13:44 +00:00
break;
}
2019-07-01 16:22:07 +00:00
case BedShapeType::INFINITE: {
// const InfiniteBed& nobin = bedhint.shape.infinite;
//Box infbb{{nobin.center.x(), nobin.center.y()}};
Box infbb;
_arrange(items, preshapes, infbb, min_obj_distance, progressind, cfn);
break;
}
case BedShapeType::UNKNOWN: {
// We know nothing about the bed, let it be infinite and zero centered
_arrange(items, preshapes, Box{}, min_obj_distance, progressind, cfn);
2019-06-27 19:13:44 +00:00
break;
}
};
2019-06-28 15:03:50 +00:00
if(stopcondition()) return false;
2019-06-27 19:13:44 +00:00
return ret;
}
/// Arrange, without the fixed items (excludes)
2019-07-01 16:22:07 +00:00
bool arrange(ArrangeablePtrs & inp,
coord_t min_d,
const BedShapeHint & bedhint,
std::function<void(unsigned)> prfn,
std::function<bool()> stopfn)
{
return arrange(inp, {}, min_d, bedhint, prfn, stopfn);
2018-11-12 13:52:52 +00:00
}
} // namespace arr
} // namespace Slic3r