PrusaSlicer-NonPlainar/src/libslic3r/Arrange.cpp

698 lines
24 KiB
C++
Raw Normal View History

2019-07-01 16:22:07 +00:00
#include "Arrange.hpp"
#include "Geometry.hpp"
2018-11-12 13:52:52 +00:00
#include "SVG.hpp"
#include "MTUtils.hpp"
2018-11-12 13:52:52 +00:00
2019-06-28 15:03:50 +00:00
#include <libnest2d/backends/clipper/geometries.hpp>
#include <libnest2d/optimizers/nlopt/subplex.hpp>
#include <libnest2d/placers/nfpplacer.hpp>
#include <libnest2d/selections/firstfit.hpp>
2018-11-12 13:52:52 +00:00
#include <numeric>
#include <ClipperUtils.hpp>
#include <boost/geometry/index/rtree.hpp>
#include <boost/multiprecision/integer.hpp>
#include <boost/rational.hpp>
namespace libnest2d {
#if !defined(_MSC_VER) && defined(__SIZEOF_INT128__) && !defined(__APPLE__)
using LargeInt = __int128;
#else
using LargeInt = boost::multiprecision::int128_t;
2019-06-28 15:03:50 +00:00
template<> struct _NumTag<LargeInt>
{
using Type = ScalarTag;
};
#endif
2019-06-28 15:03:50 +00:00
template<class T> struct _NumTag<boost::rational<T>>
{
using Type = RationalTag;
};
namespace nfp {
2019-06-28 15:03:50 +00:00
template<class S> struct NfpImpl<S, NfpLevel::CONVEX_ONLY>
{
NfpResult<S> operator()(const S &sh, const S &other)
{
return nfpConvexOnly<S, boost::rational<LargeInt>>(sh, other);
}
};
2019-06-28 15:03:50 +00:00
} // namespace nfp
} // namespace libnest2d
2018-11-12 13:52:52 +00:00
namespace Slic3r {
2019-07-01 16:22:07 +00:00
template<class Tout = double, class = FloatingOnly<Tout>>
inline SLIC3R_CONSTEXPR EigenVec<Tout, 2> unscaled(
const ClipperLib::IntPoint &v) SLIC3R_NOEXCEPT
{
return EigenVec<Tout, 2>{unscaled<Tout>(v.X), unscaled<Tout>(v.Y)};
}
namespace arrangement {
2018-11-12 13:52:52 +00:00
using namespace libnest2d;
2019-06-28 15:03:50 +00:00
namespace clppr = ClipperLib;
2018-11-12 13:52:52 +00:00
2019-07-03 13:06:10 +00:00
// Get the libnest2d types for clipper backend
2019-06-28 15:03:50 +00:00
using Item = _Item<clppr::Polygon>;
using Box = _Box<clppr::IntPoint>;
using Circle = _Circle<clppr::IntPoint>;
using Segment = _Segment<clppr::IntPoint>;
using MultiPolygon = TMultiShape<clppr::Polygon>;
2019-07-03 13:06:10 +00:00
// The return value of nesting, a vector (for each logical bed) of Item
// reference vectors.
2019-06-28 15:03:50 +00:00
using PackGroup = _PackGroup<clppr::Polygon>;
2019-06-27 19:13:44 +00:00
2019-07-03 13:06:10 +00:00
// Summon the spatial indexing facilities from boost
2018-11-12 13:52:52 +00:00
namespace bgi = boost::geometry::index;
using SpatElement = std::pair<Box, unsigned>;
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
2019-06-28 15:03:50 +00:00
using ItemGroup = std::vector<std::reference_wrapper<Item>>;
2018-11-12 13:52:52 +00:00
2019-07-03 13:06:10 +00:00
// A coefficient used in separating bigger items and smaller items.
2018-11-12 13:52:52 +00:00
const double BIG_ITEM_TRESHOLD = 0.02;
2019-01-21 09:34:10 +00:00
// Fill in the placer algorithm configuration with values carefully chosen for
// Slic3r.
2018-11-12 13:52:52 +00:00
template<class PConf>
void fillConfig(PConf& pcfg) {
// Align the arranged pile into the center of the bin
pcfg.alignment = PConf::Alignment::CENTER;
// Start placing the items from the center of the print bed
pcfg.starting_point = PConf::Alignment::CENTER;
// TODO cannot use rotations until multiple objects of same geometry can
2019-07-03 13:06:10 +00:00
// handle different rotations.
2018-11-12 13:52:52 +00:00
pcfg.rotations = { 0.0 };
// The accuracy of optimization.
// Goes from 0.0 to 1.0 and scales performance as well
pcfg.accuracy = 0.65f;
2019-07-03 13:06:10 +00:00
// Allow parallel execution.
2018-11-12 13:52:52 +00:00
pcfg.parallel = true;
}
2019-07-02 13:24:40 +00:00
// Apply penality to object function result. This is used only when alignment
// after arrange is explicitly disabled (PConfig::Alignment::DONT_ALIGN)
double fixed_overfit(const std::tuple<double, Box>& result, const Box &binbb)
{
double score = std::get<0>(result);
Box pilebb = std::get<1>(result);
Box fullbb = sl::boundingBox(pilebb, binbb);
double diff = fullbb.area() - binbb.area();
if(diff > 0) score += diff;
return score;
}
2018-11-12 13:52:52 +00:00
2019-01-21 09:34:10 +00:00
// A class encapsulating the libnest2d Nester class and extending it with other
// management and spatial index structures for acceleration.
2018-11-12 13:52:52 +00:00
template<class TBin>
2019-07-02 10:15:53 +00:00
class AutoArranger {
2019-06-19 10:04:11 +00:00
public:
2019-01-21 09:34:10 +00:00
// Useful type shortcuts...
2019-06-28 15:03:50 +00:00
using Placer = typename placers::_NofitPolyPlacer<clppr::Polygon, TBin>;
using Selector = selections::_FirstFitSelection<clppr::Polygon>;
2019-07-02 08:32:01 +00:00
using Packer = Nester<Placer, Selector>;
using PConfig = typename Packer::PlacementConfig;
2018-11-12 13:52:52 +00:00
using Distance = TCoord<PointImpl>;
2019-07-02 08:32:01 +00:00
protected:
Packer m_pck;
PConfig m_pconf; // Placement configuration
2019-07-02 10:15:53 +00:00
TBin m_bin;
2019-07-02 13:24:40 +00:00
double m_bin_area;
2019-07-02 08:32:01 +00:00
SpatIndex m_rtree; // spatial index for the normal (bigger) objects
2019-01-21 09:34:10 +00:00
SpatIndex m_smallsrtree; // spatial index for only the smaller items
2019-07-02 08:32:01 +00:00
double m_norm; // A coefficient to scale distances
2019-06-28 15:03:50 +00:00
MultiPolygon m_merged_pile; // The already merged pile (vector of items)
2019-07-02 08:32:01 +00:00
Box m_pilebb; // The bounding box of the merged pile.
ItemGroup m_remaining; // Remaining items (m_items at the beginning)
ItemGroup m_items; // The items to be packed
2019-07-02 10:15:53 +00:00
// This is "the" object function which is evaluated many times for each
// vertex (decimated with the accuracy parameter) of each object.
// Therefore it is upmost crucial for this function to be as efficient
// as it possibly can be but at the same time, it has to provide
// reasonable results.
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
2019-07-02 13:24:40 +00:00
objfunc(const Item &item, const clppr::IntPoint &bincenter)
2019-07-02 10:15:53 +00:00
{
const double bin_area = m_bin_area;
const SpatIndex& spatindex = m_rtree;
const SpatIndex& smalls_spatindex = m_smallsrtree;
const ItemGroup& remaining = m_remaining;
// We will treat big items (compared to the print bed) differently
auto isBig = [bin_area](double a) {
return a/bin_area > BIG_ITEM_TRESHOLD ;
};
// Candidate item bounding box
2019-07-03 13:06:10 +00:00
auto ibb = item.boundingBox();
2019-07-02 10:15:53 +00:00
// Calculate the full bounding box of the pile with the candidate item
2019-07-02 13:24:40 +00:00
auto fullbb = sl::boundingBox(m_pilebb, ibb);
2019-07-02 10:15:53 +00:00
// The bounding box of the big items (they will accumulate in the center
// of the pile
Box bigbb;
if(spatindex.empty()) bigbb = fullbb;
else {
auto boostbb = spatindex.bounds();
boost::geometry::convert(boostbb, bigbb);
}
// Will hold the resulting score
double score = 0;
2019-07-03 13:06:10 +00:00
// Density is the pack density: how big is the arranged pile
double density = 0;
const double N = m_norm;
auto norm = [N](double val) { return val / N; };
// Distinction of cases for the arrangement scene
enum e_cases {
// This branch is for big items in a mixed (big and small) scene
// OR for all items in a small-only scene.
BIG_ITEM,
2019-07-02 10:15:53 +00:00
2019-07-03 13:06:10 +00:00
// This branch is for the last big item in a mixed scene
LAST_BIG_ITEM,
2019-07-02 10:15:53 +00:00
2019-07-03 13:06:10 +00:00
// For small items in a mixed scene.
SMALL_ITEM
} compute_case;
bool bigitems = isBig(item.area()) || spatindex.empty();
if(bigitems && !remaining.empty()) compute_case = BIG_ITEM;
else if (bigitems && remaining.empty()) compute_case = LAST_BIG_ITEM;
else compute_case = SMALL_ITEM;
switch (compute_case) {
case BIG_ITEM: {
const clppr::IntPoint& minc = ibb.minCorner(); // bottom left corner
const clppr::IntPoint& maxc = ibb.maxCorner(); // top right corner
2019-07-02 10:15:53 +00:00
// top left and bottom right corners
2019-07-03 13:06:10 +00:00
clppr::IntPoint top_left{getX(minc), getY(maxc)};
clppr::IntPoint bottom_right{getX(maxc), getY(minc)};
2019-07-02 10:15:53 +00:00
// Now the distance of the gravity center will be calculated to the
// five anchor points and the smallest will be chosen.
std::array<double, 5> dists;
auto cc = fullbb.center(); // The gravity center
dists[0] = pl::distance(minc, cc);
dists[1] = pl::distance(maxc, cc);
dists[2] = pl::distance(ibb.center(), cc);
dists[3] = pl::distance(top_left, cc);
dists[4] = pl::distance(bottom_right, cc);
2019-07-03 13:06:10 +00:00
2019-07-02 10:15:53 +00:00
// The smalles distance from the arranged pile center:
2019-07-03 13:06:10 +00:00
double dist = norm(*(std::min_element(dists.begin(), dists.end())));
double bindist = norm(pl::distance(ibb.center(), bincenter));
dist = 0.8 * dist + 0.2*bindist;
// Prepare a variable for the alignment score.
// This will indicate: how well is the candidate item
// aligned with its neighbors. We will check the alignment
// with all neighbors and return the score for the best
// alignment. So it is enough for the candidate to be
// aligned with only one item.
auto alignment_score = 1.0;
auto query = bgi::intersects(ibb);
auto& index = isBig(item.area()) ? spatindex : smalls_spatindex;
// Query the spatial index for the neighbors
std::vector<SpatElement> result;
result.reserve(index.size());
index.query(query, std::back_inserter(result));
// now get the score for the best alignment
for(auto& e : result) {
auto idx = e.second;
Item& p = m_items[idx];
auto parea = p.area();
if(std::abs(1.0 - parea/item.area()) < 1e-6) {
auto bb = sl::boundingBox(p.boundingBox(), ibb);
auto bbarea = bb.area();
auto ascore = 1.0 - (item.area() + parea)/bbarea;
if(ascore < alignment_score) alignment_score = ascore;
2019-07-02 10:15:53 +00:00
}
}
2019-07-03 13:06:10 +00:00
density = std::sqrt(norm(fullbb.width()) * norm(fullbb.height()));
// The final mix of the score is the balance between the
// distance from the full pile center, the pack density and
// the alignment with the neighbors
if (result.empty())
score = 0.5 * dist + 0.5 * density;
else
score = 0.40 * dist + 0.40 * density + 0.2 * alignment_score;
break;
}
case LAST_BIG_ITEM: {
auto mp = m_merged_pile;
mp.emplace_back(item.transformedShape());
auto chull = sl::convexHull(mp);
placers::EdgeCache<clppr::Polygon> ec(chull);
double circ = norm(ec.circumference());
double bcirc = 2.0 * norm(fullbb.width() + fullbb.height());
score = 0.5 * circ + 0.5 * bcirc;
break;
}
case SMALL_ITEM: {
2019-07-02 10:15:53 +00:00
// Here there are the small items that should be placed around the
// already processed bigger items.
// No need to play around with the anchor points, the center will be
// just fine for small items
2019-07-03 13:06:10 +00:00
score = norm(pl::distance(ibb.center(), bigbb.center()));
break;
}
2019-07-02 10:15:53 +00:00
}
return std::make_tuple(score, fullbb);
}
std::function<double(const Item&)> get_objfn();
2019-07-02 08:32:01 +00:00
2018-11-12 13:52:52 +00:00
public:
2019-07-02 10:15:53 +00:00
AutoArranger(const TBin & bin,
Distance dist,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcond)
: m_pck(bin, dist)
, m_bin(bin)
2019-07-03 13:06:10 +00:00
, m_bin_area(sl::area(bin))
, m_norm(std::sqrt(m_bin_area))
2018-11-12 13:52:52 +00:00
{
fillConfig(m_pconf);
2019-01-21 09:34:10 +00:00
// Set up a callback that is called just before arranging starts
// This functionality is provided by the Nester class (m_pack).
2018-11-12 13:52:52 +00:00
m_pconf.before_packing =
2019-06-28 15:03:50 +00:00
[this](const MultiPolygon& merged_pile, // merged pile
2018-11-12 13:52:52 +00:00
const ItemGroup& items, // packed items
const ItemGroup& remaining) // future items to be packed
{
m_items = items;
m_merged_pile = merged_pile;
m_remaining = remaining;
m_pilebb = sl::boundingBox(merged_pile);
m_rtree.clear();
m_smallsrtree.clear();
2019-07-02 13:24:40 +00:00
2018-11-12 13:52:52 +00:00
// We will treat big items (compared to the print bed) differently
auto isBig = [this](double a) {
2019-07-02 13:24:40 +00:00
return a / m_bin_area > BIG_ITEM_TRESHOLD ;
2018-11-12 13:52:52 +00:00
};
for(unsigned idx = 0; idx < items.size(); ++idx) {
2019-06-28 15:03:50 +00:00
Item& itm = items[idx];
2018-11-12 13:52:52 +00:00
if(isBig(itm.area())) m_rtree.insert({itm.boundingBox(), idx});
m_smallsrtree.insert({itm.boundingBox(), idx});
}
};
2019-07-01 16:22:07 +00:00
2019-07-02 10:15:53 +00:00
m_pconf.object_function = get_objfn();
2019-07-01 16:22:07 +00:00
if (progressind) m_pck.progressIndicator(progressind);
if (stopcond) m_pck.stopCondition(stopcond);
2019-07-02 10:15:53 +00:00
m_pck.configure(m_pconf);
2018-11-12 13:52:52 +00:00
}
2019-06-27 19:13:44 +00:00
2019-06-28 15:03:50 +00:00
template<class...Args> inline PackGroup operator()(Args&&...args) {
2018-11-12 13:52:52 +00:00
m_rtree.clear();
2019-06-27 19:13:44 +00:00
return m_pck.execute(std::forward<Args>(args)...);
2018-11-12 13:52:52 +00:00
}
2019-06-27 19:13:44 +00:00
2019-07-02 10:15:53 +00:00
inline void preload(std::vector<Item>& fixeditems) {
m_pconf.alignment = PConfig::Alignment::DONT_ALIGN;
2019-07-02 13:24:40 +00:00
auto bb = sl::boundingBox(m_bin);
auto bbcenter = bb.center();
m_pconf.object_function = [this, bb, bbcenter](const Item &item) {
return fixed_overfit(objfunc(item, bbcenter), bb);
};
// Build the rtree for queries to work
2019-07-02 10:15:53 +00:00
for(unsigned idx = 0; idx < fixeditems.size(); ++idx) {
Item& itm = fixeditems[idx];
itm.markAsFixed();
m_rtree.insert({itm.boundingBox(), idx});
}
m_pck.configure(m_pconf);
}
2019-06-28 15:03:50 +00:00
bool is_colliding(const Item& item) {
if(m_rtree.empty()) return false;
std::vector<SpatElement> result;
m_rtree.query(bgi::intersects(item.boundingBox()),
std::back_inserter(result));
return !result.empty();
}
2018-11-12 13:52:52 +00:00
};
2019-07-02 10:15:53 +00:00
template<> std::function<double(const Item&)> AutoArranger<Box>::get_objfn()
{
2019-07-02 13:24:40 +00:00
auto bincenter = m_bin.center();
return [this, bincenter](const Item &itm) {
auto result = objfunc(itm, bincenter);
2019-07-02 10:15:53 +00:00
double score = std::get<0>(result);
auto& fullbb = std::get<1>(result);
2019-07-02 13:24:40 +00:00
2019-07-02 10:15:53 +00:00
double miss = Placer::overfit(fullbb, m_bin);
miss = miss > 0? miss : 0;
score += miss*miss;
2019-07-02 13:24:40 +00:00
2019-07-02 10:15:53 +00:00
return score;
};
}
2018-11-12 13:52:52 +00:00
2019-07-02 10:15:53 +00:00
template<> std::function<double(const Item&)> AutoArranger<Circle>::get_objfn()
{
2019-07-02 13:24:40 +00:00
auto bincenter = m_bin.center();
return [this, bincenter](const Item &item) {
auto result = objfunc(item, bincenter);
2019-07-02 10:15:53 +00:00
double score = std::get<0>(result);
2019-07-02 13:24:40 +00:00
2019-07-02 10:15:53 +00:00
auto isBig = [this](const Item& itm) {
2019-07-02 13:24:40 +00:00
return itm.area() / m_bin_area > BIG_ITEM_TRESHOLD ;
2018-11-12 13:52:52 +00:00
};
2019-07-02 13:24:40 +00:00
2019-07-02 10:15:53 +00:00
if(isBig(item)) {
auto mp = m_merged_pile;
mp.push_back(item.transformedShape());
auto chull = sl::convexHull(mp);
double miss = Placer::overfit(chull, m_bin);
if(miss < 0) miss = 0;
score += miss*miss;
}
2019-07-02 13:24:40 +00:00
2019-07-02 10:15:53 +00:00
return score;
};
}
2019-07-02 13:24:40 +00:00
// Specialization for a generalized polygon.
// Warning: this is unfinished business. It may or may not work.
template<>
std::function<double(const Item &)> AutoArranger<clppr::Polygon>::get_objfn()
2019-07-02 10:15:53 +00:00
{
2019-07-02 13:24:40 +00:00
auto bincenter = sl::boundingBox(m_bin).center();
return [this, bincenter](const Item &item) {
return std::get<0>(objfunc(item, bincenter));
};
2019-07-02 10:15:53 +00:00
}
2019-06-28 15:03:50 +00:00
inline Circle to_lnCircle(const CircleBed& circ) {
return Circle({circ.center()(0), circ.center()(1)}, circ.radius());
2018-11-12 13:52:52 +00:00
}
2019-01-21 09:34:10 +00:00
// Get the type of bed geometry from a simple vector of points.
2018-11-12 13:52:52 +00:00
BedShapeHint bedShape(const Polyline &bed) {
BedShapeHint ret;
2019-06-28 15:03:50 +00:00
auto x = [](const Point& p) { return p(X); };
auto y = [](const Point& p) { return p(Y); };
2018-11-12 13:52:52 +00:00
auto width = [x](const BoundingBox& box) {
return x(box.max) - x(box.min);
};
auto height = [y](const BoundingBox& box) {
return y(box.max) - y(box.min);
};
auto area = [&width, &height](const BoundingBox& box) {
double w = width(box);
double h = height(box);
2019-06-28 15:03:50 +00:00
return w * h;
2018-11-12 13:52:52 +00:00
};
auto poly_area = [](Polyline p) {
Polygon pp; pp.points.reserve(p.points.size() + 1);
pp.points = std::move(p.points);
pp.points.emplace_back(pp.points.front());
return std::abs(pp.area());
};
auto distance_to = [x, y](const Point& p1, const Point& p2) {
double dx = x(p2) - x(p1);
double dy = y(p2) - y(p1);
return std::sqrt(dx*dx + dy*dy);
};
auto bb = bed.bounding_box();
auto isCircle = [bb, distance_to](const Polyline& polygon) {
auto center = bb.center();
std::vector<double> vertex_distances;
double avg_dist = 0;
for (auto pt: polygon.points)
{
double distance = distance_to(center, pt);
vertex_distances.push_back(distance);
avg_dist += distance;
}
avg_dist /= vertex_distances.size();
2019-06-28 15:03:50 +00:00
CircleBed ret(center, avg_dist);
for(auto el : vertex_distances)
2018-11-12 13:52:52 +00:00
{
if (std::abs(el - avg_dist) > 10 * SCALED_EPSILON) {
2019-06-28 15:03:50 +00:00
ret = CircleBed();
break;
}
2018-11-12 13:52:52 +00:00
}
return ret;
};
auto parea = poly_area(bed);
if( (1.0 - parea/area(bb)) < 1e-3 ) {
ret.type = BedShapeType::BOX;
ret.shape.box = bb;
}
else if(auto c = isCircle(bed)) {
ret.type = BedShapeType::CIRCLE;
ret.shape.circ = c;
} else {
ret.type = BedShapeType::IRREGULAR;
ret.shape.polygon = bed;
}
// Determine the bed shape by hand
return ret;
}
2019-07-02 10:15:53 +00:00
template<class BinT> // Arrange for arbitrary bin type
PackGroup _arrange(std::vector<Item> & shapes,
2019-07-02 10:15:53 +00:00
std::vector<Item> & excludes,
2019-06-28 15:03:50 +00:00
const BinT & bin,
coord_t minobjd,
std::function<void(unsigned)> prind,
std::function<bool()> stopfn)
2019-07-01 16:22:07 +00:00
{
AutoArranger<BinT> arranger{bin, minobjd, prind, stopfn};
2019-07-02 13:24:40 +00:00
auto it = excludes.begin();
while (it != excludes.end())
sl::isInside(it->transformedShape(), bin) ?
++it : it = excludes.erase(it);
2019-07-01 16:22:07 +00:00
// If there is something on the plate
2019-07-02 13:24:40 +00:00
if(!excludes.empty())
{
arranger.preload(excludes);
auto binbb = sl::boundingBox(bin);
// Try to put the first item to the center, as the arranger
// will not do this for us.
for (auto it = shapes.begin(); it != shapes.end(); ++it) {
Item &itm = *it;
auto ibb = itm.boundingBox();
auto d = binbb.center() - ibb.center();
itm.translate(d);
if (!arranger.is_colliding(itm)) {
itm.markAsFixed();
// Write the transformation data into the item. The
// callback was set on the instantiation of Item and
// calls the Arrangeable interface.
it->callApplyFunction(0);
// Remove this item, as it is arranged now
it = shapes.erase(it);
break;
}
2019-07-01 16:22:07 +00:00
}
}
2019-07-02 13:24:40 +00:00
std::vector<std::reference_wrapper<Item>> inp;
inp.reserve(shapes.size() + excludes.size());
for (auto &itm : shapes ) inp.emplace_back(itm);
for (auto &itm : excludes) inp.emplace_back(itm);
2019-07-02 13:24:40 +00:00
return arranger(inp.begin(), inp.end());
}
2019-06-27 19:13:44 +00:00
inline SLIC3R_CONSTEXPR coord_t stride_padding(coord_t w)
{
return w + w / 5;
}
2019-07-02 10:15:53 +00:00
// The final client function for arrangement. A progress indicator and
// a stop predicate can be also be passed to control the process.
2019-07-02 13:24:40 +00:00
bool arrange(ArrangeablePtrs & arrangables,
const ArrangeablePtrs & excludes,
2019-07-03 17:24:41 +00:00
coord_t min_obj_dist,
const BedShapeHint & bedhint,
2019-06-27 19:13:44 +00:00
std::function<void(unsigned)> progressind,
std::function<bool()> stopcondition)
{
bool ret = true;
2019-06-28 15:03:50 +00:00
namespace clppr = ClipperLib;
2019-07-02 10:15:53 +00:00
std::vector<Item> items, fixeditems;
2019-06-28 15:03:50 +00:00
items.reserve(arrangables.size());
coord_t binwidth = 0;
auto process_arrangeable =
2019-07-01 16:22:07 +00:00
[](const Arrangeable * arrangeable,
std::vector<Item> & outp,
std::function<void(const Item &, unsigned)> applyfn)
{
2019-07-01 16:22:07 +00:00
assert(arrangeable);
2019-07-01 16:22:07 +00:00
auto arrangeitem = arrangeable->get_arrange_polygon();
2019-07-01 16:22:07 +00:00
Polygon & p = std::get<0>(arrangeitem);
const Vec2crd &offs = std::get<1>(arrangeitem);
double rotation = std::get<2>(arrangeitem);
2019-07-01 16:22:07 +00:00
if (p.is_counter_clockwise()) p.reverse();
2019-06-28 15:03:50 +00:00
2019-07-01 16:22:07 +00:00
clppr::Polygon clpath(Slic3rMultiPoint_to_ClipperPath(p));
2019-07-01 16:22:07 +00:00
auto firstp = clpath.Contour.front();
clpath.Contour.emplace_back(firstp);
2019-07-01 16:22:07 +00:00
outp.emplace_back(applyfn, std::move(clpath));
2019-07-02 08:32:01 +00:00
outp.back().rotation(rotation);
outp.back().translation({offs.x(), offs.y()});
2019-07-01 16:22:07 +00:00
};
for (Arrangeable *arrangeable : arrangables) {
process_arrangeable(
arrangeable,
items,
2019-06-28 15:03:50 +00:00
// callback called by arrange to apply the result on the arrangeable
2019-07-03 17:24:41 +00:00
[arrangeable, &binwidth, &ret](const Item &itm, unsigned binidx) {
ret = !binidx; // Return value false more bed is required
2019-06-28 15:03:50 +00:00
clppr::cInt stride = binidx * stride_padding(binwidth);
clppr::IntPoint offs = itm.translation();
2019-07-01 16:22:07 +00:00
arrangeable->apply_arrange_result({unscaled(offs.X + stride),
2019-06-28 15:03:50 +00:00
unscaled(offs.Y)},
2019-07-03 17:24:41 +00:00
itm.rotation(), binidx);
});
2019-06-27 19:13:44 +00:00
}
for (const Arrangeable * fixed: excludes)
2019-07-02 10:15:53 +00:00
process_arrangeable(fixed, fixeditems, nullptr);
2019-06-27 19:13:44 +00:00
// Integer ceiling the min distance from the bed perimeters
2019-07-03 17:24:41 +00:00
coord_t md = min_obj_dist - SCALED_EPSILON;
2019-06-27 19:13:44 +00:00
md = (md % 2) ? md / 2 + 1 : md / 2;
2019-07-03 17:24:41 +00:00
auto &cfn = stopcondition;
auto &pri = progressind;
2019-06-27 19:13:44 +00:00
switch (bedhint.type) {
2019-07-03 17:24:41 +00:00
case BedShapeType::BOX: {
// Create the arranger for the box shaped bed
BoundingBox bbb = bedhint.shape.box;
bbb.min -= Point{md, md}, bbb.max += Point{md, md};
Box binbb{{bbb.min(X), bbb.min(Y)}, {bbb.max(X), bbb.max(Y)}};
binwidth = coord_t(binbb.width());
2019-06-28 15:03:50 +00:00
2019-07-03 17:24:41 +00:00
_arrange(items, fixeditems, binbb, min_obj_dist, pri, cfn);
break;
}
case BedShapeType::CIRCLE: {
auto c = bedhint.shape.circ;
auto cc = to_lnCircle(c);
binwidth = scaled(c.radius());
2019-07-01 16:22:07 +00:00
2019-07-03 17:24:41 +00:00
_arrange(items, fixeditems, cc, min_obj_dist, pri, cfn);
break;
}
case BedShapeType::IRREGULAR: {
auto ctour = Slic3rMultiPoint_to_ClipperPath(bedhint.shape.polygon);
auto irrbed = sl::create<clppr::Polygon>(std::move(ctour));
BoundingBox polybb(bedhint.shape.polygon);
binwidth = (polybb.max(X) - polybb.min(X));
2019-07-01 16:22:07 +00:00
2019-07-03 17:24:41 +00:00
_arrange(items, fixeditems, irrbed, min_obj_dist, pri, cfn);
break;
}
case BedShapeType::INFINITE: {
const InfiniteBed& nobin = bedhint.shape.infinite;
auto infbb = Box::infinite({nobin.center.x(), nobin.center.y()});
2019-07-01 16:22:07 +00:00
2019-07-03 17:24:41 +00:00
_arrange(items, fixeditems, infbb, min_obj_dist, pri, cfn);
break;
}
case BedShapeType::UNKNOWN: {
// We know nothing about the bed, let it be infinite and zero centered
_arrange(items, fixeditems, Box::infinite(), min_obj_dist, pri, cfn);
2019-07-01 16:22:07 +00:00
break;
}
2019-06-27 19:13:44 +00:00
};
2019-07-03 17:24:41 +00:00
if(stopcondition && stopcondition()) return false;
2019-06-27 19:13:44 +00:00
return ret;
}
2019-07-02 10:15:53 +00:00
// Arrange, without the fixed items (excludes)
2019-07-03 17:24:41 +00:00
bool arrange(ArrangeablePtrs & inp,
coord_t min_d,
const BedShapeHint & bedhint,
std::function<void(unsigned)> prfn,
std::function<bool()> stopfn)
{
return arrange(inp, {}, min_d, bedhint, prfn, stopfn);
2018-11-12 13:52:52 +00:00
}
} // namespace arr
} // namespace Slic3r