PrusaSlicer-NonPlainar/src/libslic3r/SLA/Hollowing.cpp

286 lines
9.9 KiB
C++
Raw Normal View History

#include <functional>
#include <libslic3r/OpenVDBUtils.hpp>
#include <libslic3r/TriangleMesh.hpp>
#include <libslic3r/SLA/Hollowing.hpp>
#include <libslic3r/SLA/IndexedMesh.hpp>
#include <libslic3r/ClipperUtils.hpp>
#include <libslic3r/SimplifyMesh.hpp>
#include <libslic3r/SLA/SupportTreeMesher.hpp>
#include <boost/log/trivial.hpp>
#include <libslic3r/MTUtils.hpp>
#include <libslic3r/I18N.hpp>
//! macro used to mark string used at localization,
//! return same string
#define L(s) Slic3r::I18N::translate(s)
namespace Slic3r {
namespace sla {
template<class S, class = FloatingOnly<S>>
inline void _scale(S s, TriangleMesh &m) { m.scale(float(s)); }
template<class S, class = FloatingOnly<S>>
inline void _scale(S s, Contour3D &m) { for (auto &p : m.points) p *= s; }
static TriangleMesh _generate_interior(const TriangleMesh &mesh,
const JobController &ctl,
double min_thickness,
double voxel_scale,
double closing_dist)
{
TriangleMesh imesh{mesh};
_scale(voxel_scale, imesh);
double offset = voxel_scale * min_thickness;
double D = voxel_scale * closing_dist;
float out_range = 0.1f * float(offset);
float in_range = 1.1f * float(offset + D);
if (ctl.stopcondition()) return {};
else ctl.statuscb(0, L("Hollowing"));
auto gridptr = mesh_to_grid(imesh, {}, out_range, in_range);
assert(gridptr);
if (!gridptr) {
BOOST_LOG_TRIVIAL(error) << "Returned OpenVDB grid is NULL";
return {};
}
if (ctl.stopcondition()) return {};
else ctl.statuscb(30, L("Hollowing"));
if (closing_dist > .0) {
gridptr = redistance_grid(*gridptr, -(offset + D), double(in_range));
} else {
D = -offset;
}
if (ctl.stopcondition()) return {};
else ctl.statuscb(70, L("Hollowing"));
double iso_surface = D;
double adaptivity = 0.;
auto omesh = grid_to_mesh(*gridptr, iso_surface, adaptivity);
_scale(1. / voxel_scale, omesh);
if (ctl.stopcondition()) return {};
else ctl.statuscb(100, L("Hollowing"));
return omesh;
}
std::unique_ptr<TriangleMesh> generate_interior(const TriangleMesh & mesh,
const HollowingConfig &hc,
const JobController & ctl)
{
static const double MIN_OVERSAMPL = 3.;
static const double MAX_OVERSAMPL = 8.;
// I can't figure out how to increase the grid resolution through openvdb
// API so the model will be scaled up before conversion and the result
// scaled down. Voxels have a unit size. If I set voxelSize smaller, it
// scales the whole geometry down, and doesn't increase the number of
// voxels.
//
// max 8x upscale, min is native voxel size
auto voxel_scale = MIN_OVERSAMPL + (MAX_OVERSAMPL - MIN_OVERSAMPL) * hc.quality;
auto meshptr = std::make_unique<TriangleMesh>(
_generate_interior(mesh, ctl, hc.min_thickness, voxel_scale,
hc.closing_distance));
if (meshptr && !meshptr->empty()) {
// This flips the normals to be outward facing...
meshptr->require_shared_vertices();
indexed_triangle_set its = std::move(meshptr->its);
Slic3r::simplify_mesh(its);
// flip normals back...
for (stl_triangle_vertex_indices &ind : its.indices)
std::swap(ind(0), ind(2));
*meshptr = Slic3r::TriangleMesh{its};
}
return meshptr;
}
2019-12-16 10:02:54 +00:00
Contour3D DrainHole::to_mesh() const
{
auto r = double(radius);
auto h = double(height);
sla::Contour3D hole = sla::cylinder(r, h, steps);
2019-12-16 10:02:54 +00:00
Eigen::Quaterniond q;
q.setFromTwoVectors(Vec3d{0., 0., 1.}, normal.cast<double>());
for(auto& p : hole.points) p = q * p + pos.cast<double>();
2019-12-16 10:02:54 +00:00
return hole;
}
bool DrainHole::operator==(const DrainHole &sp) const
{
return (pos == sp.pos) && (normal == sp.normal) &&
is_approx(radius, sp.radius) &&
is_approx(height, sp.height);
}
bool DrainHole::is_inside(const Vec3f& pt) const
{
Eigen::Hyperplane<float, 3> plane(normal, pos);
float dist = plane.signedDistance(pt);
2019-12-16 10:02:54 +00:00
if (dist < float(EPSILON) || dist > height)
return false;
Eigen::ParametrizedLine<float, 3> axis(pos, normal);
if ( axis.squaredDistance(pt) < pow(radius, 2.f))
return true;
return false;
}
// Given a line s+dir*t, find parameter t of intersections with the hole
// and the normal (points inside the hole). Outputs through out reference,
// returns true if two intersections were found.
bool DrainHole::get_intersections(const Vec3f& s, const Vec3f& dir,
std::array<std::pair<float, Vec3d>, 2>& out)
const
{
assert(is_approx(normal.norm(), 1.f));
const Eigen::ParametrizedLine<float, 3> ray(s, dir.normalized());
for (size_t i=0; i<2; ++i)
out[i] = std::make_pair(sla::IndexedMesh::hit_result::infty(), Vec3d::Zero());
const float sqr_radius = pow(radius, 2.f);
// first check a bounding sphere of the hole:
Vec3f center = pos+normal*height/2.f;
float sqr_dist_limit = pow(height/2.f, 2.f) + sqr_radius ;
if (ray.squaredDistance(center) > sqr_dist_limit)
return false;
// The line intersects the bounding sphere, look for intersections with
// bases of the cylinder.
size_t found = 0; // counts how many intersections were found
Eigen::Hyperplane<float, 3> base;
if (! is_approx(ray.direction().dot(normal), 0.f)) {
for (size_t i=1; i<=1; --i) {
Vec3f cylinder_center = pos+i*height*normal;
if (i == 0) {
// The hole base can be identical to mesh surface if it is flat
// let's better move the base outward a bit
cylinder_center -= EPSILON*normal;
}
base = Eigen::Hyperplane<float, 3>(normal, cylinder_center);
Vec3f intersection = ray.intersectionPoint(base);
// Only accept the point if it is inside the cylinder base.
if ((cylinder_center-intersection).squaredNorm() < sqr_radius) {
out[found].first = ray.intersectionParameter(base);
out[found].second = (i==0 ? 1. : -1.) * normal.cast<double>();
++found;
}
}
}
else
{
// In case the line was perpendicular to the cylinder axis, previous
// block was skipped, but base will later be assumed to be valid.
base = Eigen::Hyperplane<float, 3>(normal, pos-EPSILON*normal);
}
// In case there is still an intersection to be found, check the wall
if (found != 2 && ! is_approx(std::abs(ray.direction().dot(normal)), 1.f)) {
// Project the ray onto the base plane
Vec3f proj_origin = base.projection(ray.origin());
Vec3f proj_dir = base.projection(ray.origin()+ray.direction())-proj_origin;
// save how the parameter scales and normalize the projected direction
float par_scale = proj_dir.norm();
proj_dir = proj_dir/par_scale;
Eigen::ParametrizedLine<float, 3> projected_ray(proj_origin, proj_dir);
// Calculate point on the secant that's closest to the center
// and its distance to the circle along the projected line
Vec3f closest = projected_ray.projection(pos);
float dist = sqrt((sqr_radius - (closest-pos).squaredNorm()));
// Unproject both intersections on the original line and check
// they are on the cylinder and not past it:
for (int i=-1; i<=1 && found !=2; i+=2) {
Vec3f isect = closest + i*dist * projected_ray.direction();
Vec3f to_isect = isect-proj_origin;
float par = to_isect.norm() / par_scale;
if (to_isect.normalized().dot(proj_dir.normalized()) < 0.f)
par *= -1.f;
Vec3d hit_normal = (pos-isect).normalized().cast<double>();
isect = ray.pointAt(par);
// check that the intersection is between the base planes:
float vert_dist = base.signedDistance(isect);
if (vert_dist > 0.f && vert_dist < height) {
out[found].first = par;
out[found].second = hit_normal;
++found;
}
}
}
// If only one intersection was found, it is some corner case,
// no intersection will be returned:
if (found != 2)
return false;
// Sort the intersections:
if (out[0].first > out[1].first)
std::swap(out[0], out[1]);
return true;
}
void cut_drainholes(std::vector<ExPolygons> & obj_slices,
const std::vector<float> &slicegrid,
float closing_radius,
const sla::DrainHoles & holes,
std::function<void(void)> thr)
{
TriangleMesh mesh;
for (const sla::DrainHole &holept : holes)
mesh.merge(sla::to_triangle_mesh(holept.to_mesh()));
if (mesh.empty()) return;
mesh.require_shared_vertices();
TriangleMeshSlicer slicer(&mesh);
std::vector<ExPolygons> hole_slices;
slicer.slice(slicegrid, SlicingMode::Regular, closing_radius, &hole_slices, thr);
if (obj_slices.size() != hole_slices.size())
BOOST_LOG_TRIVIAL(warning)
<< "Sliced object and drain-holes layer count does not match!";
size_t until = std::min(obj_slices.size(), hole_slices.size());
for (size_t i = 0; i < until; ++i)
obj_slices[i] = diff_ex(obj_slices[i], hole_slices[i]);
}
void hollow_mesh(TriangleMesh &mesh, const HollowingConfig &cfg)
{
std::unique_ptr<Slic3r::TriangleMesh> inter_ptr =
Slic3r::sla::generate_interior(mesh);
if (inter_ptr) mesh.merge(*inter_ptr);
mesh.require_shared_vertices();
}
}} // namespace Slic3r::sla