PrusaSlicer-NonPlainar/xs/src/libslic3r/Point.hpp

366 lines
15 KiB
C++
Raw Normal View History

2013-07-06 13:26:32 +00:00
#ifndef slic3r_Point_hpp_
#define slic3r_Point_hpp_
#include "libslic3r.h"
#include <cstddef>
2013-07-15 18:31:43 +00:00
#include <vector>
#include <cmath>
#include <string>
2015-05-02 19:43:22 +00:00
#include <sstream>
#include <unordered_map>
2013-07-11 16:55:51 +00:00
#include <Eigen/Geometry>
namespace Slic3r {
class Line;
2015-01-17 23:36:21 +00:00
class Linef;
2014-05-21 18:08:21 +00:00
class MultiPoint;
class Point;
class Point3;
2013-12-21 13:27:58 +00:00
class Pointf;
2014-11-15 21:41:22 +00:00
class Pointf3;
typedef Point Vector;
typedef Point3 Vector3;
2014-12-15 00:28:11 +00:00
typedef Pointf Vectorf;
typedef Pointf3 Vectorf3;
typedef std::vector<Point> Points;
2013-11-23 20:39:05 +00:00
typedef std::vector<Point*> PointPtrs;
typedef std::vector<const Point*> PointConstPtrs;
typedef std::vector<Point3> Points3;
2013-12-21 13:27:58 +00:00
typedef std::vector<Pointf> Pointfs;
2014-11-15 21:41:22 +00:00
typedef std::vector<Pointf3> Pointf3s;
// Eigen types, to replace the Slic3r's own types in the future.
// Vector types with a fixed point coordinate base type.
typedef Eigen::Matrix<coord_t, 2, 1, Eigen::DontAlign> Vec2crd;
typedef Eigen::Matrix<coord_t, 3, 1, Eigen::DontAlign> Vec3crd;
typedef Eigen::Matrix<int64_t, 2, 1, Eigen::DontAlign> Vec2i64;
typedef Eigen::Matrix<int64_t, 3, 1, Eigen::DontAlign> Vec3i64;
// Vector types with a double coordinate base type.
typedef Eigen::Matrix<float, 2, 1, Eigen::DontAlign> Vec2f;
typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> Vec3f;
typedef Eigen::Matrix<double, 2, 1, Eigen::DontAlign> Vec2d;
typedef Eigen::Matrix<double, 3, 1, Eigen::DontAlign> Vec3d;
typedef Eigen::Transform<float, 2, Eigen::Affine, Eigen::DontAlign> Transform2f;
typedef Eigen::Transform<double, 2, Eigen::Affine, Eigen::DontAlign> Transform2d;
typedef Eigen::Transform<float, 3, Eigen::Affine, Eigen::DontAlign> Transform3f;
typedef Eigen::Transform<double, 3, Eigen::Affine, Eigen::DontAlign> Transform3d;
inline int64_t cross2(const Vec2i64 &v1, const Vec2i64 &v2) { return v1.x() * v2.y() - v1.y() * v2.x(); }
inline coord_t cross2(const Vec2crd &v1, const Vec2crd &v2) { return v1.x() * v2.y() - v1.y() * v2.x(); }
inline float cross2(const Vec2f &v1, const Vec2f &v2) { return v1.x() * v2.y() - v1.y() * v2.x(); }
inline double cross2(const Vec2d &v1, const Vec2d &v2) { return v1.x() * v2.y() - v1.y() * v2.x(); }
class Point : public Vec2crd
2013-07-06 13:26:32 +00:00
{
public:
typedef coord_t coord_type;
Point() : Vec2crd() { (*this)(0) = 0; (*this)(1) = 0; }
Point(coord_t x, coord_t y) { (*this)(0) = x; (*this)(1) = y; }
Point(int64_t x, int64_t y) { (*this)(0) = coord_t(x); (*this)(1) = coord_t(y); } // for Clipper
Point(double x, double y) { (*this)(0) = coord_t(lrint(x)); (*this)(1) = coord_t(lrint(y)); }
Point(const Point &rhs) { *this = rhs; }
// This constructor allows you to construct Point from Eigen expressions
template<typename OtherDerived>
Point(const Eigen::MatrixBase<OtherDerived> &other) : Vec2crd(other) {}
static Point new_scale(coordf_t x, coordf_t y) { return Point(coord_t(scale_(x)), coord_t(scale_(y))); }
// This method allows you to assign Eigen expressions to MyVectorType
template<typename OtherDerived>
Point& operator=(const Eigen::MatrixBase<OtherDerived> &other)
{
this->Vec2crd::operator=(other);
return *this;
}
const coord_t& x() const { return (*this)(0); }
coord_t& x() { return (*this)(0); }
const coord_t& y() const { return (*this)(1); }
coord_t& y() { return (*this)(1); }
bool operator==(const Point& rhs) const { return this->x() == rhs.x() && this->y() == rhs.y(); }
bool operator!=(const Point& rhs) const { return ! (*this == rhs); }
bool operator< (const Point& rhs) const { return this->x() < rhs.x() || (this->x() == rhs.x() && this->y() < rhs.y()); }
Point& operator+=(const Point& rhs) { this->x() += rhs.x(); this->y() += rhs.y(); return *this; }
Point& operator-=(const Point& rhs) { this->x() -= rhs.x(); this->y() -= rhs.y(); return *this; }
Point& operator*=(const double &rhs) { this->x() *= rhs; this->y() *= rhs; return *this; }
std::string wkt() const;
std::string dump_perl() const;
void rotate(double angle);
void rotate(double angle, const Point &center);
Point rotated(double angle) const { Point res(*this); res.rotate(angle); return res; }
Point rotated(double angle, const Point &center) const { Point res(*this); res.rotate(angle, center); return res; }
bool coincides_with_epsilon(const Point &point) const;
int nearest_point_index(const Points &points) const;
int nearest_point_index(const PointConstPtrs &points) const;
int nearest_point_index(const PointPtrs &points) const;
bool nearest_point(const Points &points, Point* point) const;
double ccw(const Point &p1, const Point &p2) const;
double ccw(const Line &line) const;
double ccw_angle(const Point &p1, const Point &p2) const;
Point projection_onto(const MultiPoint &poly) const;
Point projection_onto(const Line &line) const;
2013-07-06 13:26:32 +00:00
};
namespace int128 {
// Exact orientation predicate,
// returns +1: CCW, 0: collinear, -1: CW.
int orient(const Point &p1, const Point &p2, const Point &p3);
// Exact orientation predicate,
// returns +1: CCW, 0: collinear, -1: CW.
int cross(const Point &v1, const Slic3r::Point &v2);
}
// To be used by std::unordered_map, std::unordered_multimap and friends.
struct PointHash {
size_t operator()(const Point &pt) const {
return std::hash<coord_t>()(pt.x()) ^ std::hash<coord_t>()(pt.y());
}
};
// A generic class to search for a closest Point in a given radius.
// It uses std::unordered_multimap to implement an efficient 2D spatial hashing.
// The PointAccessor has to return const Point*.
// If a nullptr is returned, it is ignored by the query.
template<typename ValueType, typename PointAccessor> class ClosestPointInRadiusLookup
{
public:
ClosestPointInRadiusLookup(coord_t search_radius, PointAccessor point_accessor = PointAccessor()) :
m_search_radius(search_radius), m_point_accessor(point_accessor), m_grid_log2(0)
{
// Resolution of a grid, twice the search radius + some epsilon.
coord_t gridres = 2 * m_search_radius + 4;
m_grid_resolution = gridres;
assert(m_grid_resolution > 0);
assert(m_grid_resolution < (coord_t(1) << 30));
// Compute m_grid_log2 = log2(m_grid_resolution)
if (m_grid_resolution > 32767) {
m_grid_resolution >>= 16;
m_grid_log2 += 16;
}
if (m_grid_resolution > 127) {
m_grid_resolution >>= 8;
m_grid_log2 += 8;
}
if (m_grid_resolution > 7) {
m_grid_resolution >>= 4;
m_grid_log2 += 4;
}
if (m_grid_resolution > 1) {
m_grid_resolution >>= 2;
m_grid_log2 += 2;
}
if (m_grid_resolution > 0)
++ m_grid_log2;
m_grid_resolution = 1 << m_grid_log2;
assert(m_grid_resolution >= gridres);
assert(gridres > m_grid_resolution / 2);
}
void insert(const ValueType &value) {
const Point *pt = m_point_accessor(value);
if (pt != nullptr)
m_map.emplace(std::make_pair(Point(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), value));
}
void insert(ValueType &&value) {
const Point *pt = m_point_accessor(value);
if (pt != nullptr)
m_map.emplace(std::make_pair(Point(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), std::move(value)));
}
// Return a pair of <ValueType*, distance_squared>
std::pair<const ValueType*, double> find(const Point &pt) {
// Iterate over 4 closest grid cells around pt,
// find the closest start point inside these cells to pt.
const ValueType *value_min = nullptr;
double dist_min = std::numeric_limits<double>::max();
// Round pt to a closest grid_cell corner.
Point grid_corner((pt.x()+(m_grid_resolution>>1))>>m_grid_log2, (pt.y()+(m_grid_resolution>>1))>>m_grid_log2);
// For four neighbors of grid_corner:
for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
// Range of fragment starts around grid_corner, close to pt.
auto range = m_map.equal_range(Point(grid_corner.x() + neighbor_x, grid_corner.y() + neighbor_y));
// Find the map entry closest to pt.
for (auto it = range.first; it != range.second; ++it) {
const ValueType &value = it->second;
const Point *pt2 = m_point_accessor(value);
if (pt2 != nullptr) {
const double d2 = (pt - *pt2).squaredNorm();
if (d2 < dist_min) {
dist_min = d2;
value_min = &value;
}
}
}
}
}
return (value_min != nullptr && dist_min < coordf_t(m_search_radius * m_search_radius)) ?
std::make_pair(value_min, dist_min) :
std::make_pair(nullptr, std::numeric_limits<double>::max());
}
private:
typedef typename std::unordered_multimap<Point, ValueType, PointHash> map_type;
PointAccessor m_point_accessor;
map_type m_map;
coord_t m_search_radius;
coord_t m_grid_resolution;
coord_t m_grid_log2;
};
class Point3 : public Vec3crd
{
public:
typedef coord_t coord_type;
explicit Point3() { (*this)(0) = (*this)(1) = (*this)(2) = 0; }
explicit Point3(coord_t x, coord_t y, coord_t z) { (*this)(0) = x; (*this)(1) = y; (*this)(2) = z; }
// This constructor allows you to construct Point3 from Eigen expressions
template<typename OtherDerived>
Point3(const Eigen::MatrixBase<OtherDerived> &other) : Vec3crd(other) {}
static Point3 new_scale(coordf_t x, coordf_t y, coordf_t z) { return Point3(coord_t(scale_(x)), coord_t(scale_(y)), coord_t(scale_(z))); }
// This method allows you to assign Eigen expressions to MyVectorType
template<typename OtherDerived>
Point3& operator=(const Eigen::MatrixBase<OtherDerived> &other)
{
this->Vec3crd::operator=(other);
return *this;
}
const coord_t& x() const { return (*this)(0); }
coord_t& x() { return (*this)(0); }
const coord_t& y() const { return (*this)(1); }
coord_t& y() { return (*this)(1); }
const coord_t& z() const { return (*this)(2); }
coord_t& z() { return (*this)(2); }
bool operator==(const Point3 &rhs) const { return this->x() == rhs.x() && this->y() == rhs.y() && this->z() == rhs.z(); }
bool operator!=(const Point3 &rhs) const { return ! (*this == rhs); }
Point xy() const { return Point(this->x(), this->y()); }
};
2015-05-02 19:43:22 +00:00
std::ostream& operator<<(std::ostream &stm, const Pointf &pointf);
class Pointf : public Vec2d
2013-12-20 19:54:11 +00:00
{
public:
typedef coordf_t coord_type;
explicit Pointf() { (*this)(0) = (*this)(1) = 0.; }
explicit Pointf(coordf_t x, coordf_t y) { (*this)(0) = x; (*this)(1) = y; }
// This constructor allows you to construct Pointf from Eigen expressions
template<typename OtherDerived>
Pointf(const Eigen::MatrixBase<OtherDerived> &other) : Vec2d(other) {}
static Pointf new_unscale(coord_t x, coord_t y) { return Pointf(unscale(x), unscale(y)); }
static Pointf new_unscale(const Point &p) { return Pointf(unscale(p.x()), unscale(p.y())); }
// This method allows you to assign Eigen expressions to MyVectorType
template<typename OtherDerived>
Pointf& operator=(const Eigen::MatrixBase<OtherDerived> &other)
{
this->Vec2d::operator=(other);
return *this;
}
const coordf_t& x() const { return (*this)(0); }
coordf_t& x() { return (*this)(0); }
const coordf_t& y() const { return (*this)(1); }
coordf_t& y() { return (*this)(1); }
std::string wkt() const;
std::string dump_perl() const;
void rotate(double angle);
void rotate(double angle, const Pointf &center);
Pointf& operator+=(const Pointf& rhs) { this->x() += rhs.x(); this->y() += rhs.y(); return *this; }
Pointf& operator-=(const Pointf& rhs) { this->x() -= rhs.x(); this->y() -= rhs.y(); return *this; }
Pointf& operator*=(const coordf_t& rhs) { this->x() *= rhs; this->y() *= rhs; return *this; }
bool operator==(const Pointf &rhs) const { return this->x() == rhs.x() && this->y() == rhs.y(); }
bool operator!=(const Pointf &rhs) const { return ! (*this == rhs); }
bool operator< (const Pointf& rhs) const { return this->x() < rhs.x() || (this->x() == rhs.x() && this->y() < rhs.y()); }
2013-12-20 19:54:11 +00:00
};
class Pointf3 : public Vec3d
{
public:
typedef coordf_t coord_type;
explicit Pointf3() { (*this)(0) = (*this)(1) = (*this)(2) = 0.; }
// explicit Pointf3(coord_t x, coord_t y, coord_t z) { (*this)(0) = x; (*this)(1) = y; (*this)(2) = z; }
explicit Pointf3(coordf_t x, coordf_t y, coordf_t z) { (*this)(0) = x; (*this)(1) = y; (*this)(2) = z; }
// This constructor allows you to construct Pointf from Eigen expressions
template<typename OtherDerived>
Pointf3(const Eigen::MatrixBase<OtherDerived> &other) : Vec3d(other) {}
static Pointf3 new_unscale(coord_t x, coord_t y, coord_t z) { return Pointf3(unscale(x), unscale(y), unscale(z)); }
static Pointf3 new_unscale(const Point3& p) { return Pointf3(unscale(p.x()), unscale(p.y()), unscale(p.z())); }
// This method allows you to assign Eigen expressions to MyVectorType
template<typename OtherDerived>
Pointf3& operator=(const Eigen::MatrixBase<OtherDerived> &other)
{
this->Vec3d::operator=(other);
return *this;
}
const coordf_t& x() const { return (*this)(0); }
coordf_t& x() { return (*this)(0); }
const coordf_t& y() const { return (*this)(1); }
coordf_t& y() { return (*this)(1); }
const coordf_t& z() const { return (*this)(2); }
coordf_t& z() { return (*this)(2); }
bool operator==(const Pointf3 &rhs) const { return this->x() == rhs.x() && this->y() == rhs.y() && this->z() == rhs.z(); }
bool operator!=(const Pointf3 &rhs) const { return ! (*this == rhs); }
Pointf xy() const { return Pointf(this->x(), this->y()); }
};
} // namespace Slic3r
// start Boost
#include <boost/version.hpp>
#include <boost/polygon/polygon.hpp>
namespace boost { namespace polygon {
template <>
struct geometry_concept<Slic3r::Point> { typedef point_concept type; };
template <>
struct point_traits<Slic3r::Point> {
typedef coord_t coordinate_type;
static inline coordinate_type get(const Slic3r::Point& point, orientation_2d orient) {
return (orient == HORIZONTAL) ? (coordinate_type)point.x() : (coordinate_type)point.y();
}
};
template <>
struct point_mutable_traits<Slic3r::Point> {
typedef coord_t coordinate_type;
static inline void set(Slic3r::Point& point, orientation_2d orient, coord_t value) {
if (orient == HORIZONTAL)
point.x() = value;
else
point.y() = value;
}
static inline Slic3r::Point construct(coord_t x_value, coord_t y_value) {
Slic3r::Point retval;
retval.x() = x_value;
retval.y() = y_value;
return retval;
}
};
} }
// end Boost
2013-07-06 13:26:32 +00:00
#endif