PrusaSlicer-NonPlainar/src/slic3r/GUI/3DScene.hpp

625 lines
29 KiB
C++
Raw Normal View History

2015-01-17 23:36:21 +00:00
#ifndef slic3r_3DScene_hpp_
#define slic3r_3DScene_hpp_
#include "libslic3r/libslic3r.h"
#include "libslic3r/Point.hpp"
#include "libslic3r/Line.hpp"
#include "libslic3r/TriangleMesh.hpp"
#include "libslic3r/Utils.hpp"
#include "libslic3r/Model.hpp"
#include "slic3r/GUI/GLCanvas3DManager.hpp"
2015-01-17 23:36:21 +00:00
2019-01-21 09:06:51 +00:00
#include <functional>
#ifndef NDEBUG
#define HAS_GLSAFE
#endif
#ifdef HAS_GLSAFE
extern void glAssertRecentCallImpl(const char *file_name, unsigned int line, const char *function_name);
inline void glAssertRecentCall() { glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); }
#define glsafe(cmd) do { cmd; glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); } while (false)
#define glcheck() do { glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); } while (false)
#else
inline void glAssertRecentCall() { }
#define glsafe(cmd) cmd
#define glcheck()
#endif
2015-01-17 23:36:21 +00:00
namespace Slic3r {
namespace GUI {
class Bed3D;
struct Camera;
class GLToolbar;
} // namespace GUI
2015-01-17 23:36:21 +00:00
class Print;
class PrintObject;
class SLAPrint;
class SLAPrintObject;
enum SLAPrintObjectStep : unsigned int;
class Model;
class ModelObject;
2018-03-09 09:40:42 +00:00
class DynamicPrintConfig;
2018-06-05 08:56:55 +00:00
class ExtrusionPath;
class ExtrusionMultiPath;
class ExtrusionLoop;
class ExtrusionEntity;
class ExtrusionEntityCollection;
// A container for interleaved arrays of 3D vertices and normals,
// possibly indexed by triangles and / or quads.
class GLIndexedVertexArray {
public:
GLIndexedVertexArray() :
vertices_and_normals_interleaved_VBO_id(0),
triangle_indices_VBO_id(0),
quad_indices_VBO_id(0)
{ this->setup_sizes(); }
GLIndexedVertexArray(const GLIndexedVertexArray &rhs) :
vertices_and_normals_interleaved(rhs.vertices_and_normals_interleaved),
triangle_indices(rhs.triangle_indices),
quad_indices(rhs.quad_indices),
vertices_and_normals_interleaved_VBO_id(0),
triangle_indices_VBO_id(0),
quad_indices_VBO_id(0)
{ this->setup_sizes(); }
GLIndexedVertexArray(GLIndexedVertexArray &&rhs) :
vertices_and_normals_interleaved(std::move(rhs.vertices_and_normals_interleaved)),
triangle_indices(std::move(rhs.triangle_indices)),
quad_indices(std::move(rhs.quad_indices)),
vertices_and_normals_interleaved_VBO_id(0),
triangle_indices_VBO_id(0),
quad_indices_VBO_id(0)
{ this->setup_sizes(); }
GLIndexedVertexArray& operator=(const GLIndexedVertexArray &rhs)
{
assert(vertices_and_normals_interleaved_VBO_id == 0);
assert(triangle_indices_VBO_id == 0);
assert(triangle_indices_VBO_id == 0);
this->vertices_and_normals_interleaved = rhs.vertices_and_normals_interleaved;
this->triangle_indices = rhs.triangle_indices;
this->quad_indices = rhs.quad_indices;
this->setup_sizes();
return *this;
}
GLIndexedVertexArray& operator=(GLIndexedVertexArray &&rhs)
{
assert(vertices_and_normals_interleaved_VBO_id == 0);
assert(triangle_indices_VBO_id == 0);
assert(triangle_indices_VBO_id == 0);
this->vertices_and_normals_interleaved = std::move(rhs.vertices_and_normals_interleaved);
this->triangle_indices = std::move(rhs.triangle_indices);
this->quad_indices = std::move(rhs.quad_indices);
this->setup_sizes();
return *this;
}
// Vertices and their normals, interleaved to be used by void glInterleavedArrays(GL_N3F_V3F, 0, x)
std::vector<float> vertices_and_normals_interleaved;
std::vector<int> triangle_indices;
std::vector<int> quad_indices;
// When the geometry data is loaded into the graphics card as Vertex Buffer Objects,
// the above mentioned std::vectors are cleared and the following variables keep their original length.
size_t vertices_and_normals_interleaved_size;
size_t triangle_indices_size;
size_t quad_indices_size;
// IDs of the Vertex Array Objects, into which the geometry has been loaded.
// Zero if the VBOs are not used.
unsigned int vertices_and_normals_interleaved_VBO_id;
unsigned int triangle_indices_VBO_id;
unsigned int quad_indices_VBO_id;
void load_mesh_flat_shading(const TriangleMesh &mesh);
2018-03-09 09:40:42 +00:00
void load_mesh_full_shading(const TriangleMesh &mesh);
void load_mesh(const TriangleMesh &mesh, bool use_VBOs) { use_VBOs ? this->load_mesh_full_shading(mesh) : this->load_mesh_flat_shading(mesh); }
inline bool has_VBOs() const { return vertices_and_normals_interleaved_VBO_id != 0; }
inline void reserve(size_t sz) {
this->vertices_and_normals_interleaved.reserve(sz * 6);
this->triangle_indices.reserve(sz * 3);
this->quad_indices.reserve(sz * 4);
}
inline void push_geometry(float x, float y, float z, float nx, float ny, float nz) {
if (this->vertices_and_normals_interleaved.size() + 6 > this->vertices_and_normals_interleaved.capacity())
this->vertices_and_normals_interleaved.reserve(next_highest_power_of_2(this->vertices_and_normals_interleaved.size() + 6));
this->vertices_and_normals_interleaved.push_back(nx);
this->vertices_and_normals_interleaved.push_back(ny);
this->vertices_and_normals_interleaved.push_back(nz);
this->vertices_and_normals_interleaved.push_back(x);
this->vertices_and_normals_interleaved.push_back(y);
this->vertices_and_normals_interleaved.push_back(z);
};
inline void push_geometry(double x, double y, double z, double nx, double ny, double nz) {
push_geometry(float(x), float(y), float(z), float(nx), float(ny), float(nz));
}
inline void push_geometry(const Vec3d& p, const Vec3d& n) {
push_geometry(p(0), p(1), p(2), n(0), n(1), n(2));
}
inline void push_triangle(int idx1, int idx2, int idx3) {
if (this->triangle_indices.size() + 3 > this->vertices_and_normals_interleaved.capacity())
this->triangle_indices.reserve(next_highest_power_of_2(this->triangle_indices.size() + 3));
this->triangle_indices.push_back(idx1);
this->triangle_indices.push_back(idx2);
this->triangle_indices.push_back(idx3);
};
inline void push_quad(int idx1, int idx2, int idx3, int idx4) {
if (this->quad_indices.size() + 4 > this->vertices_and_normals_interleaved.capacity())
this->quad_indices.reserve(next_highest_power_of_2(this->quad_indices.size() + 4));
this->quad_indices.push_back(idx1);
this->quad_indices.push_back(idx2);
this->quad_indices.push_back(idx3);
this->quad_indices.push_back(idx4);
};
// Finalize the initialization of the geometry & indices,
// upload the geometry and indices to OpenGL VBO objects
// and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs.
void finalize_geometry(bool use_VBOs);
// Release the geometry data, release OpenGL VBOs.
void release_geometry();
// Render either using an immediate mode, or the VBOs.
void render() const;
void render(const std::pair<size_t, size_t> &tverts_range, const std::pair<size_t, size_t> &qverts_range) const;
// Is there any geometry data stored?
bool empty() const { return vertices_and_normals_interleaved_size == 0; }
// Is this object indexed, or is it just a set of triangles?
bool indexed() const { return ! this->empty() && this->triangle_indices_size + this->quad_indices_size > 0; }
void clear() {
this->vertices_and_normals_interleaved.clear();
this->triangle_indices.clear();
this->quad_indices.clear();
this->setup_sizes();
}
// Shrink the internal storage to tighly fit the data stored.
void shrink_to_fit() {
if (! this->has_VBOs())
this->setup_sizes();
this->vertices_and_normals_interleaved.shrink_to_fit();
this->triangle_indices.shrink_to_fit();
this->quad_indices.shrink_to_fit();
}
BoundingBoxf3 bounding_box() const {
BoundingBoxf3 bbox;
if (! this->vertices_and_normals_interleaved.empty()) {
bbox.defined = true;
bbox.min(0) = bbox.max(0) = this->vertices_and_normals_interleaved[3];
bbox.min(1) = bbox.max(1) = this->vertices_and_normals_interleaved[4];
bbox.min(2) = bbox.max(2) = this->vertices_and_normals_interleaved[5];
for (size_t i = 9; i < this->vertices_and_normals_interleaved.size(); i += 6) {
const float *verts = this->vertices_and_normals_interleaved.data() + i;
bbox.min(0) = std::min<coordf_t>(bbox.min(0), verts[0]);
bbox.min(1) = std::min<coordf_t>(bbox.min(1), verts[1]);
bbox.min(2) = std::min<coordf_t>(bbox.min(2), verts[2]);
bbox.max(0) = std::max<coordf_t>(bbox.max(0), verts[0]);
bbox.max(1) = std::max<coordf_t>(bbox.max(1), verts[1]);
bbox.max(2) = std::max<coordf_t>(bbox.max(2), verts[2]);
}
}
return bbox;
}
private:
inline void setup_sizes() {
vertices_and_normals_interleaved_size = this->vertices_and_normals_interleaved.size();
triangle_indices_size = this->triangle_indices.size();
quad_indices_size = this->quad_indices.size();
}
};
class GLVolume {
public:
2018-03-09 09:40:42 +00:00
static const float SELECTED_COLOR[4];
static const float HOVER_SELECT_COLOR[4];
static const float HOVER_DESELECT_COLOR[4];
2018-03-09 09:40:42 +00:00
static const float OUTSIDE_COLOR[4];
static const float SELECTED_OUTSIDE_COLOR[4];
static const float DISABLED_COLOR[4];
static const float MODEL_COLOR[4][4];
static const float SLA_SUPPORT_COLOR[4];
static const float SLA_PAD_COLOR[4];
2018-03-09 09:40:42 +00:00
enum EHoverState : unsigned char
{
2019-04-25 11:35:24 +00:00
HS_None,
HS_Select,
HS_Deselect
};
2018-06-21 06:37:04 +00:00
GLVolume(float r = 1.f, float g = 1.f, float b = 1.f, float a = 1.f);
GLVolume(const float *rgba) : GLVolume(rgba[0], rgba[1], rgba[2], rgba[3]) {}
~GLVolume();
2018-06-21 06:37:04 +00:00
private:
Geometry::Transformation m_instance_transformation;
Geometry::Transformation m_volume_transformation;
2018-11-22 12:33:20 +00:00
// Shift in z required by sla supports+pad
double m_sla_shift_z;
2018-06-21 06:37:04 +00:00
// Bounding box of this volume, in unscaled coordinates.
mutable BoundingBoxf3 m_transformed_bounding_box;
// Whether or not is needed to recalculate the transformed bounding box.
mutable bool m_transformed_bounding_box_dirty;
// Pointer to convex hull of the original mesh, if any.
// This object may or may not own the convex hull instance based on m_convex_hull_owned
const TriangleMesh* m_convex_hull;
bool m_convex_hull_owned;
// Bounding box of this volume, in unscaled coordinates.
mutable BoundingBoxf3 m_transformed_convex_hull_bounding_box;
// Whether or not is needed to recalculate the transformed convex hull bounding box.
mutable bool m_transformed_convex_hull_bounding_box_dirty;
2018-06-21 06:37:04 +00:00
public:
// Bounding box of this volume, in unscaled coordinates.
BoundingBoxf3 bounding_box;
// Color of the triangles / quads held by this volume.
float color[4];
2018-03-09 09:40:42 +00:00
// Color used to render this volume.
float render_color[4];
struct CompositeID {
CompositeID(int object_id, int volume_id, int instance_id) : object_id(object_id), volume_id(volume_id), instance_id(instance_id) {}
CompositeID() : object_id(-1), volume_id(-1), instance_id(-1) {}
// Object ID, which is equal to the index of the respective ModelObject in Model.objects array.
int object_id;
// Volume ID, which is equal to the index of the respective ModelVolume in ModelObject.volumes array.
// If negative, it is an index of a geometry produced by the PrintObject for the respective ModelObject,
// and which has no associated ModelVolume in ModelObject.volumes. For example, SLA supports.
// Volume with a negative volume_id cannot be picked independently, it will pick the associated instance.
int volume_id;
// Instance ID, which is equal to the index of the respective ModelInstance in ModelObject.instances array.
int instance_id;
bool operator==(const CompositeID &rhs) const { return object_id == rhs.object_id && volume_id == rhs.volume_id && instance_id == rhs.instance_id; }
bool operator!=(const CompositeID &rhs) const { return ! (*this == rhs); }
};
CompositeID composite_id;
// Fingerprint of the source geometry. For ModelVolumes, it is the ModelVolume::ID and ModelInstanceID,
// for generated volumes it is the timestamp generated by PrintState::invalidate() or PrintState::set_done(),
// and the associated ModelInstanceID.
// Valid geometry_id should always be positive.
std::pair<size_t, size_t> geometry_id;
2018-04-05 10:52:29 +00:00
// An ID containing the extruder ID (used to select color).
int extruder_id;
// Is this object selected?
bool selected;
// Is this object disabled from selection?
bool disabled;
// Whether or not this volume is active for rendering
2018-01-17 09:39:05 +00:00
bool is_active;
// Whether or not to use this volume when applying zoom_to_volumes()
bool zoom_to_volumes;
// Wheter or not this volume is enabled for outside print volume detection in shader.
bool shader_outside_printer_detection_enabled;
2018-03-09 09:40:42 +00:00
// Wheter or not this volume is outside print volume.
bool is_outside;
// Is mouse or rectangle selection over this object to select/deselect it ?
EHoverState hover;
2018-04-05 10:52:29 +00:00
// Wheter or not this volume has been generated from a modifier
2018-06-18 13:07:17 +00:00
bool is_modifier;
2018-04-05 10:52:29 +00:00
// Wheter or not this volume has been generated from the wipe tower
2018-06-18 13:07:17 +00:00
bool is_wipe_tower;
// Wheter or not this volume has been generated from an extrusion path
bool is_extrusion_path;
// Wheter or not to always render this volume using its own alpha
bool force_transparent;
// Whether or not always use the volume's own color (not using SELECTED/HOVER/DISABLED/OUTSIDE)
bool force_native_color;
// Interleaved triangles & normals with indexed triangles & quads.
GLIndexedVertexArray indexed_vertex_array;
// Ranges of triangle and quad indices to be rendered.
std::pair<size_t, size_t> tverts_range;
std::pair<size_t, size_t> qverts_range;
// If the qverts or tverts contain thick extrusions, then offsets keeps pointers of the starts
// of the extrusions per layer.
std::vector<coordf_t> print_zs;
// Offset into qverts & tverts, or offsets into indices stored into an OpenGL name_index_buffer.
std::vector<size_t> offsets;
2018-03-09 09:40:42 +00:00
void set_render_color(float r, float g, float b, float a);
void set_render_color(const float* rgba, unsigned int size);
// Sets render color in dependence of current state
void set_render_color();
// set color according to model volume
void set_color_from_model_volume(const ModelVolume *model_volume);
const Geometry::Transformation& get_instance_transformation() const { return m_instance_transformation; }
void set_instance_transformation(const Geometry::Transformation& transformation) { m_instance_transformation = transformation; set_bounding_boxes_as_dirty(); }
const Vec3d& get_instance_offset() const { return m_instance_transformation.get_offset(); }
double get_instance_offset(Axis axis) const { return m_instance_transformation.get_offset(axis); }
void set_instance_offset(const Vec3d& offset) { m_instance_transformation.set_offset(offset); set_bounding_boxes_as_dirty(); }
void set_instance_offset(Axis axis, double offset) { m_instance_transformation.set_offset(axis, offset); set_bounding_boxes_as_dirty(); }
const Vec3d& get_instance_rotation() const { return m_instance_transformation.get_rotation(); }
double get_instance_rotation(Axis axis) const { return m_instance_transformation.get_rotation(axis); }
void set_instance_rotation(const Vec3d& rotation) { m_instance_transformation.set_rotation(rotation); set_bounding_boxes_as_dirty(); }
void set_instance_rotation(Axis axis, double rotation) { m_instance_transformation.set_rotation(axis, rotation); set_bounding_boxes_as_dirty(); }
Vec3d get_instance_scaling_factor() const { return m_instance_transformation.get_scaling_factor(); }
double get_instance_scaling_factor(Axis axis) const { return m_instance_transformation.get_scaling_factor(axis); }
void set_instance_scaling_factor(const Vec3d& scaling_factor) { m_instance_transformation.set_scaling_factor(scaling_factor); set_bounding_boxes_as_dirty(); }
void set_instance_scaling_factor(Axis axis, double scaling_factor) { m_instance_transformation.set_scaling_factor(axis, scaling_factor); set_bounding_boxes_as_dirty(); }
const Vec3d& get_instance_mirror() const { return m_instance_transformation.get_mirror(); }
double get_instance_mirror(Axis axis) const { return m_instance_transformation.get_mirror(axis); }
void set_instance_mirror(const Vec3d& mirror) { m_instance_transformation.set_mirror(mirror); set_bounding_boxes_as_dirty(); }
void set_instance_mirror(Axis axis, double mirror) { m_instance_transformation.set_mirror(axis, mirror); set_bounding_boxes_as_dirty(); }
const Geometry::Transformation& get_volume_transformation() const { return m_volume_transformation; }
void set_volume_transformation(const Geometry::Transformation& transformation) { m_volume_transformation = transformation; set_bounding_boxes_as_dirty(); }
const Vec3d& get_volume_offset() const { return m_volume_transformation.get_offset(); }
double get_volume_offset(Axis axis) const { return m_volume_transformation.get_offset(axis); }
void set_volume_offset(const Vec3d& offset) { m_volume_transformation.set_offset(offset); set_bounding_boxes_as_dirty(); }
void set_volume_offset(Axis axis, double offset) { m_volume_transformation.set_offset(axis, offset); set_bounding_boxes_as_dirty(); }
const Vec3d& get_volume_rotation() const { return m_volume_transformation.get_rotation(); }
double get_volume_rotation(Axis axis) const { return m_volume_transformation.get_rotation(axis); }
void set_volume_rotation(const Vec3d& rotation) { m_volume_transformation.set_rotation(rotation); set_bounding_boxes_as_dirty(); }
void set_volume_rotation(Axis axis, double rotation) { m_volume_transformation.set_rotation(axis, rotation); set_bounding_boxes_as_dirty(); }
const Vec3d& get_volume_scaling_factor() const { return m_volume_transformation.get_scaling_factor(); }
double get_volume_scaling_factor(Axis axis) const { return m_volume_transformation.get_scaling_factor(axis); }
void set_volume_scaling_factor(const Vec3d& scaling_factor) { m_volume_transformation.set_scaling_factor(scaling_factor); set_bounding_boxes_as_dirty(); }
void set_volume_scaling_factor(Axis axis, double scaling_factor) { m_volume_transformation.set_scaling_factor(axis, scaling_factor); set_bounding_boxes_as_dirty(); }
const Vec3d& get_volume_mirror() const { return m_volume_transformation.get_mirror(); }
double get_volume_mirror(Axis axis) const { return m_volume_transformation.get_mirror(axis); }
void set_volume_mirror(const Vec3d& mirror) { m_volume_transformation.set_mirror(mirror); set_bounding_boxes_as_dirty(); }
void set_volume_mirror(Axis axis, double mirror) { m_volume_transformation.set_mirror(axis, mirror); set_bounding_boxes_as_dirty(); }
2018-11-22 12:33:20 +00:00
double get_sla_shift_z() const { return m_sla_shift_z; }
void set_sla_shift_z(double z) { m_sla_shift_z = z; }
void set_convex_hull(const TriangleMesh *convex_hull, bool owned);
2018-06-21 06:37:04 +00:00
int object_idx() const { return this->composite_id.object_id; }
int volume_idx() const { return this->composite_id.volume_id; }
int instance_idx() const { return this->composite_id.instance_id; }
2018-06-21 06:37:04 +00:00
2019-01-21 09:06:51 +00:00
Transform3d world_matrix() const;
bool is_left_handed() const;
const BoundingBoxf3& transformed_bounding_box() const;
// non-caching variant
BoundingBoxf3 transformed_convex_hull_bounding_box(const Transform3d &trafo) const;
// caching variant
const BoundingBoxf3& transformed_convex_hull_bounding_box() const;
bool empty() const { return this->indexed_vertex_array.empty(); }
bool indexed() const { return this->indexed_vertex_array.indexed(); }
void set_range(coordf_t low, coordf_t high);
void render() const;
2018-06-21 06:37:04 +00:00
void render_VBOs(int color_id, int detection_id, int worldmatrix_id) const;
void render_legacy() const;
void finalize_geometry(bool use_VBOs) { this->indexed_vertex_array.finalize_geometry(use_VBOs); }
void release_geometry() { this->indexed_vertex_array.release_geometry(); }
2019-01-21 09:06:51 +00:00
void set_bounding_boxes_as_dirty() { m_transformed_bounding_box_dirty = true; m_transformed_convex_hull_bounding_box_dirty = true; }
bool is_sla_support() const;
bool is_sla_pad() const;
};
typedef std::vector<GLVolume*> GLVolumePtrs;
typedef std::pair<GLVolume*, std::pair<unsigned int, double>> GLVolumeWithIdAndZ;
typedef std::vector<GLVolumeWithIdAndZ> GLVolumeWithIdAndZList;
class GLVolumeCollection
{
public:
enum ERenderType : unsigned char
{
Opaque,
Transparent,
All
};
private:
2018-03-09 09:40:42 +00:00
// min and max vertex of the print box volume
float print_box_min[3];
float print_box_max[3];
2018-11-27 13:50:57 +00:00
// z range for clipping in shaders
float z_range[2];
// plane coeffs for clipping in shaders
float clipping_plane[4];
public:
GLVolumePtrs volumes;
GLVolumeCollection() {};
~GLVolumeCollection() { clear(); };
std::vector<int> load_object(
const ModelObject *model_object,
int obj_idx,
const std::vector<int> &instance_idxs,
const std::string &color_by,
bool use_VBOs);
int load_object_volume(
const ModelObject *model_object,
int obj_idx,
int volume_idx,
int instance_idx,
const std::string &color_by,
bool use_VBOs);
// Load SLA auxiliary GLVolumes (for support trees or pad).
void load_object_auxiliary(
const SLAPrintObject *print_object,
int obj_idx,
// pairs of <instance_idx, print_instance_idx>
const std::vector<std::pair<size_t, size_t>> &instances,
SLAPrintObjectStep milestone,
// Timestamp of the last change of the milestone
size_t timestamp,
bool use_VBOs);
int load_wipe_tower_preview(
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool use_VBOs, bool size_unknown, float brim_width);
// Render the volumes by OpenGL.
void render_VBOs(ERenderType type, bool disable_cullface, const Transform3d& view_matrix, std::function<bool(const GLVolume&)> filter_func = std::function<bool(const GLVolume&)>()) const;
void render_legacy(ERenderType type, bool disable_cullface, const Transform3d& view_matrix, std::function<bool(const GLVolume&)> filter_func = std::function<bool(const GLVolume&)>()) const;
// Finalize the initialization of the geometry & indices,
// upload the geometry and indices to OpenGL VBO objects
// and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs.
void finalize_geometry(bool use_VBOs) { for (auto *v : volumes) v->finalize_geometry(use_VBOs); }
// Release the geometry data assigned to the volumes.
// If OpenGL VBOs were allocated, an OpenGL context has to be active to release them.
void release_geometry() { for (auto *v : volumes) v->release_geometry(); }
// Clear the geometry
void clear() { for (auto *v : volumes) delete v; volumes.clear(); }
bool empty() const { return volumes.empty(); }
void set_range(double low, double high) { for (GLVolume *vol : this->volumes) vol->set_range(low, high); }
2018-03-09 09:40:42 +00:00
void set_print_box(float min_x, float min_y, float min_z, float max_x, float max_y, float max_z) {
print_box_min[0] = min_x; print_box_min[1] = min_y; print_box_min[2] = min_z;
print_box_max[0] = max_x; print_box_max[1] = max_y; print_box_max[2] = max_z;
}
2018-11-27 13:50:57 +00:00
void set_z_range(float min_z, float max_z) { z_range[0] = min_z; z_range[1] = max_z; }
void set_clipping_plane(const double* coeffs) { clipping_plane[0] = coeffs[0]; clipping_plane[1] = coeffs[1]; clipping_plane[2] = coeffs[2]; clipping_plane[3] = coeffs[3]; }
2018-11-27 13:50:57 +00:00
// returns true if all the volumes are completely contained in the print volume
// returns the containment state in the given out_state, if non-null
bool check_outside_state(const DynamicPrintConfig* config, ModelInstance::EPrintVolumeState* out_state);
void reset_outside_state();
2018-04-05 10:52:29 +00:00
void update_colors_by_extruder(const DynamicPrintConfig* config);
// Returns a vector containing the sorted list of all the print_zs of the volumes contained in this collection
std::vector<double> get_current_print_zs(bool active_only) const;
private:
GLVolumeCollection(const GLVolumeCollection &other);
GLVolumeCollection& operator=(const GLVolumeCollection &);
};
GLVolumeWithIdAndZList volumes_to_render(const GLVolumePtrs& volumes, GLVolumeCollection::ERenderType type, const Transform3d& view_matrix, std::function<bool(const GLVolume&)> filter_func = nullptr);
class GLModel
{
protected:
GLVolume m_volume;
bool m_useVBOs;
std::string m_filename;
public:
GLModel();
virtual ~GLModel();
bool init(bool useVBOs) { return on_init(useVBOs); }
bool init_from_file(const std::string& filename, bool useVBOs) { return on_init_from_file(filename, useVBOs); }
void center_around(const Vec3d& center) { m_volume.set_volume_offset(center - m_volume.bounding_box.center()); }
void set_color(const float* color, unsigned int size);
const Vec3d& get_offset() const;
void set_offset(const Vec3d& offset);
const Vec3d& get_rotation() const;
void set_rotation(const Vec3d& rotation);
const Vec3d& get_scale() const;
void set_scale(const Vec3d& scale);
const std::string& get_filename() const { return m_filename; }
const BoundingBoxf3& get_bounding_box() const { return m_volume.bounding_box; }
void reset();
void render() const;
protected:
virtual bool on_init(bool useVBOs) { return false; }
virtual bool on_init_from_file(const std::string& filename, bool useVBOs) { return false; }
private:
void render_VBOs() const;
void render_legacy() const;
};
class GLArrow : public GLModel
{
protected:
virtual bool on_init(bool useVBOs);
};
class GLCurvedArrow : public GLModel
{
unsigned int m_resolution;
public:
explicit GLCurvedArrow(unsigned int resolution);
protected:
virtual bool on_init(bool useVBOs);
};
class GLBed : public GLModel
{
protected:
virtual bool on_init_from_file(const std::string& filename, bool useVBOs);
};
2015-01-17 23:36:21 +00:00
class _3DScene
{
2018-05-09 08:47:04 +00:00
static GUI::GLCanvas3DManager s_canvas_mgr;
public:
2018-06-04 08:14:09 +00:00
static std::string get_gl_info(bool format_as_html, bool extensions);
2018-05-09 08:47:04 +00:00
static bool add_canvas(wxGLCanvas* canvas, GUI::Bed3D& bed, GUI::Camera& camera, GUI::GLToolbar& view_toolbar);
2018-05-09 08:47:04 +00:00
static bool remove_canvas(wxGLCanvas* canvas);
static void remove_all_canvases();
static bool init(wxGLCanvas* canvas);
2018-05-09 08:47:04 +00:00
static GUI::GLCanvas3D* get_canvas(wxGLCanvas* canvas);
static void thick_lines_to_verts(const Lines& lines, const std::vector<double>& widths, const std::vector<double>& heights, bool closed, double top_z, GLVolume& volume);
static void thick_lines_to_verts(const Lines3& lines, const std::vector<double>& widths, const std::vector<double>& heights, bool closed, GLVolume& volume);
2018-06-05 08:56:55 +00:00
static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, const Point& copy, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionLoop& extrusion_loop, float print_z, const Point& copy, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionMultiPath& extrusion_multi_path, float print_z, const Point& copy, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionEntityCollection& extrusion_entity_collection, float print_z, const Point& copy, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionEntity* extrusion_entity, float print_z, const Point& copy, GLVolume& volume);
static void polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume);
static void point3_to_verts(const Vec3crd& point, double width, double height, GLVolume& volume);
2015-01-17 23:36:21 +00:00
};
}
#endif