PrusaSlicer-NonPlainar/xs/src/slic3r/GUI/3DScene.cpp

3173 lines
129 KiB
C++
Raw Normal View History

#include <GL/glew.h>
2015-01-17 23:36:21 +00:00
#include "3DScene.hpp"
#include "../../libslic3r/libslic3r.h"
#include "../../libslic3r/ExtrusionEntity.hpp"
#include "../../libslic3r/ExtrusionEntityCollection.hpp"
#include "../../libslic3r/Geometry.hpp"
#include "../../libslic3r/GCode/PreviewData.hpp"
#include "../../libslic3r/Print.hpp"
#include "../../libslic3r/Slicing.hpp"
2018-04-05 10:52:29 +00:00
#include "../../slic3r/GUI/PresetBundle.hpp"
#include "GCode/Analyzer.hpp"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <utility>
#include <assert.h>
#include <boost/log/trivial.hpp>
#include <tbb/parallel_for.h>
#include <tbb/spin_mutex.h>
2018-01-16 13:59:06 +00:00
#include <wx/bitmap.h>
#include <wx/dcmemory.h>
#include <wx/image.h>
#include <wx/settings.h>
#include "GUI.hpp"
2015-01-17 23:36:21 +00:00
namespace Slic3r {
void GLIndexedVertexArray::load_mesh_flat_shading(const TriangleMesh &mesh)
{
assert(triangle_indices.empty() && vertices_and_normals_interleaved_size == 0);
assert(quad_indices.empty() && triangle_indices_size == 0);
assert(vertices_and_normals_interleaved.size() % 6 == 0 && quad_indices_size == vertices_and_normals_interleaved.size());
this->vertices_and_normals_interleaved.reserve(this->vertices_and_normals_interleaved.size() + 3 * 3 * 2 * mesh.facets_count());
for (int i = 0; i < mesh.stl.stats.number_of_facets; ++ i) {
const stl_facet &facet = mesh.stl.facet_start[i];
for (int j = 0; j < 3; ++ j)
this->push_geometry(facet.vertex[j].x, facet.vertex[j].y, facet.vertex[j].z, facet.normal.x, facet.normal.y, facet.normal.z);
}
}
2018-03-09 09:40:42 +00:00
void GLIndexedVertexArray::load_mesh_full_shading(const TriangleMesh &mesh)
{
assert(triangle_indices.empty() && vertices_and_normals_interleaved_size == 0);
assert(quad_indices.empty() && triangle_indices_size == 0);
assert(vertices_and_normals_interleaved.size() % 6 == 0 && quad_indices_size == vertices_and_normals_interleaved.size());
this->vertices_and_normals_interleaved.reserve(this->vertices_and_normals_interleaved.size() + 3 * 3 * 2 * mesh.facets_count());
unsigned int vertices_count = 0;
for (int i = 0; i < mesh.stl.stats.number_of_facets; ++i) {
const stl_facet &facet = mesh.stl.facet_start[i];
for (int j = 0; j < 3; ++j)
this->push_geometry(facet.vertex[j].x, facet.vertex[j].y, facet.vertex[j].z, facet.normal.x, facet.normal.y, facet.normal.z);
this->push_triangle(vertices_count, vertices_count + 1, vertices_count + 2);
vertices_count += 3;
}
}
void GLIndexedVertexArray::finalize_geometry(bool use_VBOs)
{
assert(this->vertices_and_normals_interleaved_VBO_id == 0);
assert(this->triangle_indices_VBO_id == 0);
assert(this->quad_indices_VBO_id == 0);
this->setup_sizes();
if (use_VBOs) {
if (! empty()) {
glGenBuffers(1, &this->vertices_and_normals_interleaved_VBO_id);
glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id);
glBufferData(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved.size() * 4, this->vertices_and_normals_interleaved.data(), GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
this->vertices_and_normals_interleaved.clear();
}
if (! this->triangle_indices.empty()) {
glGenBuffers(1, &this->triangle_indices_VBO_id);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices.size() * 4, this->triangle_indices.data(), GL_STATIC_DRAW);
this->triangle_indices.clear();
}
if (! this->quad_indices.empty()) {
glGenBuffers(1, &this->quad_indices_VBO_id);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices.size() * 4, this->quad_indices.data(), GL_STATIC_DRAW);
this->quad_indices.clear();
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
this->shrink_to_fit();
}
void GLIndexedVertexArray::release_geometry()
{
if (this->vertices_and_normals_interleaved_VBO_id)
glDeleteBuffers(1, &this->vertices_and_normals_interleaved_VBO_id);
if (this->triangle_indices_VBO_id)
glDeleteBuffers(1, &this->triangle_indices_VBO_id);
if (this->quad_indices_VBO_id)
glDeleteBuffers(1, &this->quad_indices_VBO_id);
this->clear();
this->shrink_to_fit();
}
void GLIndexedVertexArray::render() const
{
if (this->vertices_and_normals_interleaved_VBO_id) {
glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id);
glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float)));
glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr);
} else {
glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data() + 3);
glNormalPointer(GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data());
}
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
if (this->indexed()) {
if (this->vertices_and_normals_interleaved_VBO_id) {
// Render using the Vertex Buffer Objects.
if (this->triangle_indices_size > 0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id);
glDrawElements(GL_TRIANGLES, GLsizei(this->triangle_indices_size), GL_UNSIGNED_INT, nullptr);
}
if (this->quad_indices_size > 0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id);
glDrawElements(GL_QUADS, GLsizei(this->quad_indices_size), GL_UNSIGNED_INT, nullptr);
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
} else {
// Render in an immediate mode.
if (! this->triangle_indices.empty())
glDrawElements(GL_TRIANGLES, GLsizei(this->triangle_indices_size), GL_UNSIGNED_INT, this->triangle_indices.data());
if (! this->quad_indices.empty())
glDrawElements(GL_QUADS, GLsizei(this->quad_indices_size), GL_UNSIGNED_INT, this->quad_indices.data());
}
} else
glDrawArrays(GL_TRIANGLES, 0, GLsizei(this->vertices_and_normals_interleaved_size / 6));
if (this->vertices_and_normals_interleaved_VBO_id)
glBindBuffer(GL_ARRAY_BUFFER, 0);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
}
void GLIndexedVertexArray::render(
const std::pair<size_t, size_t> &tverts_range,
const std::pair<size_t, size_t> &qverts_range) const
{
assert(this->indexed());
if (! this->indexed())
return;
if (this->vertices_and_normals_interleaved_VBO_id) {
// Render using the Vertex Buffer Objects.
glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id);
glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float)));
glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
if (this->triangle_indices_size > 0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id);
glDrawElements(GL_TRIANGLES, GLsizei(std::min(this->triangle_indices_size, tverts_range.second - tverts_range.first)), GL_UNSIGNED_INT, (const void*)(tverts_range.first * 4));
}
if (this->quad_indices_size > 0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id);
glDrawElements(GL_QUADS, GLsizei(std::min(this->quad_indices_size, qverts_range.second - qverts_range.first)), GL_UNSIGNED_INT, (const void*)(qverts_range.first * 4));
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
} else {
// Render in an immediate mode.
glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data() + 3);
glNormalPointer(GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data());
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
if (! this->triangle_indices.empty())
glDrawElements(GL_TRIANGLES, GLsizei(std::min(this->triangle_indices_size, tverts_range.second - tverts_range.first)), GL_UNSIGNED_INT, (const void*)(this->triangle_indices.data() + tverts_range.first));
if (! this->quad_indices.empty())
glDrawElements(GL_QUADS, GLsizei(std::min(this->quad_indices_size, qverts_range.second - qverts_range.first)), GL_UNSIGNED_INT, (const void*)(this->quad_indices.data() + qverts_range.first));
}
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
}
2018-03-09 09:40:42 +00:00
const float GLVolume::SELECTED_COLOR[4] = { 0.0f, 1.0f, 0.0f, 1.0f };
const float GLVolume::HOVER_COLOR[4] = { 0.4f, 0.9f, 0.1f, 1.0f };
const float GLVolume::OUTSIDE_COLOR[4] = { 0.0f, 0.38f, 0.8f, 1.0f };
const float GLVolume::SELECTED_OUTSIDE_COLOR[4] = { 0.19f, 0.58f, 1.0f, 1.0f };
2018-03-09 09:40:42 +00:00
void GLVolume::set_render_color(float r, float g, float b, float a)
{
render_color[0] = r;
render_color[1] = g;
render_color[2] = b;
render_color[3] = a;
}
void GLVolume::set_render_color(const float* rgba, unsigned int size)
{
size = std::min((unsigned int)4, size);
for (int i = 0; i < size; ++i)
{
render_color[i] = rgba[i];
}
}
void GLVolume::set_render_color()
{
if (selected)
{
if (is_outside)
set_render_color(SELECTED_OUTSIDE_COLOR, 4);
else
set_render_color(SELECTED_COLOR, 4);
}
else if (hover)
set_render_color(HOVER_COLOR, 4);
else if (is_outside)
set_render_color(OUTSIDE_COLOR, 4);
else
set_render_color(color, 4);
}
void GLVolume::set_range(double min_z, double max_z)
{
this->qverts_range.first = 0;
this->qverts_range.second = this->indexed_vertex_array.quad_indices_size;
this->tverts_range.first = 0;
this->tverts_range.second = this->indexed_vertex_array.triangle_indices_size;
if (! this->print_zs.empty()) {
// The Z layer range is specified.
// First test whether the Z span of this object is not out of (min_z, max_z) completely.
if (this->print_zs.front() > max_z || this->print_zs.back() < min_z) {
this->qverts_range.second = 0;
this->tverts_range.second = 0;
} else {
// Then find the lowest layer to be displayed.
size_t i = 0;
for (; i < this->print_zs.size() && this->print_zs[i] < min_z; ++ i);
if (i == this->print_zs.size()) {
// This shall not happen.
this->qverts_range.second = 0;
this->tverts_range.second = 0;
} else {
// Remember start of the layer.
this->qverts_range.first = this->offsets[i * 2];
this->tverts_range.first = this->offsets[i * 2 + 1];
// Some layers are above $min_z. Which?
for (; i < this->print_zs.size() && this->print_zs[i] <= max_z; ++ i);
if (i < this->print_zs.size()) {
this->qverts_range.second = this->offsets[i * 2];
this->tverts_range.second = this->offsets[i * 2 + 1];
}
}
}
}
}
void GLVolume::render() const
{
if (!is_active)
return;
glCullFace(GL_BACK);
glPushMatrix();
glTranslated(this->origin.x, this->origin.y, this->origin.z);
if (this->indexed_vertex_array.indexed())
this->indexed_vertex_array.render(this->tverts_range, this->qverts_range);
else
this->indexed_vertex_array.render();
glPopMatrix();
}
void GLVolume::render_using_layer_height() const
{
if (!is_active)
return;
GLint current_program_id;
glGetIntegerv(GL_CURRENT_PROGRAM, &current_program_id);
if ((layer_height_texture_data.shader_id > 0) && (layer_height_texture_data.shader_id != current_program_id))
glUseProgram(layer_height_texture_data.shader_id);
GLint z_to_texture_row_id = (layer_height_texture_data.shader_id > 0) ? glGetUniformLocation(layer_height_texture_data.shader_id, "z_to_texture_row") : -1;
GLint z_texture_row_to_normalized_id = (layer_height_texture_data.shader_id > 0) ? glGetUniformLocation(layer_height_texture_data.shader_id, "z_texture_row_to_normalized") : -1;
GLint z_cursor_id = (layer_height_texture_data.shader_id > 0) ? glGetUniformLocation(layer_height_texture_data.shader_id, "z_cursor") : -1;
GLint z_cursor_band_width_id = (layer_height_texture_data.shader_id > 0) ? glGetUniformLocation(layer_height_texture_data.shader_id, "z_cursor_band_width") : -1;
if (z_to_texture_row_id >= 0)
glUniform1f(z_to_texture_row_id, (GLfloat)layer_height_texture_z_to_row_id());
if (z_texture_row_to_normalized_id >= 0)
glUniform1f(z_texture_row_to_normalized_id, (GLfloat)(1.0f / layer_height_texture_height()));
if (z_cursor_id >= 0)
glUniform1f(z_cursor_id, (GLfloat)(layer_height_texture_data.print_object->model_object()->bounding_box().max.z * layer_height_texture_data.z_cursor_relative));
if (z_cursor_band_width_id >= 0)
glUniform1f(z_cursor_band_width_id, (GLfloat)layer_height_texture_data.edit_band_width);
unsigned int w = layer_height_texture_width();
unsigned int h = layer_height_texture_height();
glBindTexture(GL_TEXTURE_2D, layer_height_texture_data.texture_id);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
glTexImage2D(GL_TEXTURE_2D, 1, GL_RGBA8, w / 2, h / 2, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, layer_height_texture_data_ptr_level0());
glTexSubImage2D(GL_TEXTURE_2D, 1, 0, 0, w / 2, h / 2, GL_RGBA, GL_UNSIGNED_BYTE, layer_height_texture_data_ptr_level1());
render();
glBindTexture(GL_TEXTURE_2D, 0);
if ((current_program_id > 0) && (layer_height_texture_data.shader_id != current_program_id))
glUseProgram(current_program_id);
}
double GLVolume::layer_height_texture_z_to_row_id() const
{
return (this->layer_height_texture.get() == nullptr) ? 0.0 : double(this->layer_height_texture->cells - 1) / (double(this->layer_height_texture->width) * this->layer_height_texture_data.print_object->model_object()->bounding_box().max.z);
}
void GLVolume::generate_layer_height_texture(PrintObject *print_object, bool force)
{
GLTexture *tex = this->layer_height_texture.get();
if (tex == nullptr)
// No layer_height_texture is assigned to this GLVolume, therefore the layer height texture cannot be filled.
return;
// Always try to update the layer height profile.
bool update = print_object->update_layer_height_profile(print_object->model_object()->layer_height_profile) || force;
// Update if the layer height profile was changed, or when the texture is not valid.
if (! update && ! tex->data.empty() && tex->cells > 0)
// Texture is valid, don't update.
return;
if (tex->data.empty()) {
tex->width = 1024;
tex->height = 1024;
tex->levels = 2;
tex->data.assign(tex->width * tex->height * 5, 0);
}
SlicingParameters slicing_params = print_object->slicing_parameters();
bool level_of_detail_2nd_level = true;
tex->cells = Slic3r::generate_layer_height_texture(
slicing_params,
Slic3r::generate_object_layers(slicing_params, print_object->model_object()->layer_height_profile),
tex->data.data(), tex->height, tex->width, level_of_detail_2nd_level);
}
// 512x512 bitmaps are supported everywhere, but that may not be sufficent for super large print volumes.
#define LAYER_HEIGHT_TEXTURE_WIDTH 1024
#define LAYER_HEIGHT_TEXTURE_HEIGHT 1024
std::vector<int> GLVolumeCollection::load_object(
const ModelObject *model_object,
int obj_idx,
const std::vector<int> &instance_idxs,
const std::string &color_by,
const std::string &select_by,
const std::string &drag_by,
bool use_VBOs)
{
static float colors[4][4] = {
{ 1.0f, 1.0f, 0.0f, 1.f },
{ 1.0f, 0.5f, 0.5f, 1.f },
{ 0.5f, 1.0f, 0.5f, 1.f },
{ 0.5f, 0.5f, 1.0f, 1.f }
};
// Object will have a single common layer height texture for all volumes.
std::shared_ptr<GLTexture> layer_height_texture = std::make_shared<GLTexture>();
std::vector<int> volumes_idx;
for (int volume_idx = 0; volume_idx < int(model_object->volumes.size()); ++ volume_idx) {
const ModelVolume *model_volume = model_object->volumes[volume_idx];
2018-04-05 10:52:29 +00:00
int extruder_id = -1;
if (!model_volume->modifier)
{
extruder_id = model_volume->config.has("extruder") ? model_volume->config.option("extruder")->getInt() : 0;
if (extruder_id == 0)
extruder_id = model_object->config.has("extruder") ? model_object->config.option("extruder")->getInt() : 0;
}
for (int instance_idx : instance_idxs) {
const ModelInstance *instance = model_object->instances[instance_idx];
TriangleMesh mesh = model_volume->mesh;
instance->transform_mesh(&mesh);
volumes_idx.push_back(int(this->volumes.size()));
float color[4];
memcpy(color, colors[((color_by == "volume") ? volume_idx : obj_idx) % 4], sizeof(float) * 3);
color[3] = model_volume->modifier ? 0.5f : 1.f;
this->volumes.emplace_back(new GLVolume(color));
GLVolume &v = *this->volumes.back();
2018-03-09 09:40:42 +00:00
if (use_VBOs)
v.indexed_vertex_array.load_mesh_full_shading(mesh);
else
v.indexed_vertex_array.load_mesh_flat_shading(mesh);
// finalize_geometry() clears the vertex arrays, therefore the bounding box has to be computed before finalize_geometry().
v.bounding_box = v.indexed_vertex_array.bounding_box();
v.indexed_vertex_array.finalize_geometry(use_VBOs);
v.composite_id = obj_idx * 1000000 + volume_idx * 1000 + instance_idx;
if (select_by == "object")
v.select_group_id = obj_idx * 1000000;
else if (select_by == "volume")
v.select_group_id = obj_idx * 1000000 + volume_idx * 1000;
else if (select_by == "instance")
v.select_group_id = v.composite_id;
if (drag_by == "object")
v.drag_group_id = obj_idx * 1000;
else if (drag_by == "instance")
v.drag_group_id = obj_idx * 1000 + instance_idx;
2018-04-05 10:52:29 +00:00
if (!model_volume->modifier)
{
v.layer_height_texture = layer_height_texture;
2018-04-05 10:52:29 +00:00
if (extruder_id != -1)
v.extruder_id = extruder_id;
}
v.is_modifier = model_volume->modifier;
}
}
return volumes_idx;
}
int GLVolumeCollection::load_wipe_tower_preview(
2017-11-30 13:43:47 +00:00
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool use_VBOs)
{
2018-05-03 09:09:13 +00:00
float color[4] = { 0.5f, 0.5f, 0.0f, 0.5f };
this->volumes.emplace_back(new GLVolume(color));
GLVolume &v = *this->volumes.back();
2018-05-03 09:09:13 +00:00
if (height == 0.0f)
height = 0.1f;
auto mesh = make_cube(width, depth, height);
mesh.translate(-width / 2.f, -depth / 2.f, 0.f);
Point origin_of_rotation(0.f, 0.f);
mesh.rotate(rotation_angle,&origin_of_rotation);
2018-03-09 09:40:42 +00:00
if (use_VBOs)
v.indexed_vertex_array.load_mesh_full_shading(mesh);
else
v.indexed_vertex_array.load_mesh_flat_shading(mesh);
v.origin = Pointf3(pos_x, pos_y, 0.);
// finalize_geometry() clears the vertex arrays, therefore the bounding box has to be computed before finalize_geometry().
v.bounding_box = v.indexed_vertex_array.bounding_box();
v.indexed_vertex_array.finalize_geometry(use_VBOs);
v.composite_id = obj_idx * 1000000;
v.select_group_id = obj_idx * 1000000;
v.drag_group_id = obj_idx * 1000;
2018-04-05 10:52:29 +00:00
v.is_wipe_tower = true;
return int(this->volumes.size() - 1);
}
void GLVolumeCollection::render_VBOs() const
{
::glEnable(GL_BLEND);
::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
2018-03-09 09:40:42 +00:00
::glCullFace(GL_BACK);
::glEnableClientState(GL_VERTEX_ARRAY);
::glEnableClientState(GL_NORMAL_ARRAY);
GLint current_program_id;
::glGetIntegerv(GL_CURRENT_PROGRAM, &current_program_id);
GLint color_id = (current_program_id > 0) ? glGetUniformLocation(current_program_id, "uniform_color") : -1;
2018-03-09 09:40:42 +00:00
GLint print_box_min_id = (current_program_id > 0) ? glGetUniformLocation(current_program_id, "print_box.min") : -1;
GLint print_box_max_id = (current_program_id > 0) ? glGetUniformLocation(current_program_id, "print_box.max") : -1;
GLint print_box_origin_id = (current_program_id > 0) ? glGetUniformLocation(current_program_id, "print_box.volume_origin") : -1;
for (GLVolume *volume : this->volumes) {
if (!volume->is_active)
continue;
2018-01-17 09:39:05 +00:00
if (!volume->indexed_vertex_array.vertices_and_normals_interleaved_VBO_id)
continue;
2018-03-09 09:40:42 +00:00
if (volume->layer_height_texture_data.can_use())
{
::glDisableClientState(GL_VERTEX_ARRAY);
::glDisableClientState(GL_NORMAL_ARRAY);
volume->generate_layer_height_texture(volume->layer_height_texture_data.print_object, false);
volume->render_using_layer_height();
::glEnableClientState(GL_VERTEX_ARRAY);
::glEnableClientState(GL_NORMAL_ARRAY);
continue;
}
2018-03-09 09:40:42 +00:00
volume->set_render_color();
GLsizei n_triangles = GLsizei(std::min(volume->indexed_vertex_array.triangle_indices_size, volume->tverts_range.second - volume->tverts_range.first));
GLsizei n_quads = GLsizei(std::min(volume->indexed_vertex_array.quad_indices_size, volume->qverts_range.second - volume->qverts_range.first));
if (n_triangles + n_quads == 0)
{
2018-03-09 09:40:42 +00:00
::glDisableClientState(GL_VERTEX_ARRAY);
::glDisableClientState(GL_NORMAL_ARRAY);
if (color_id >= 0)
{
2018-03-09 09:40:42 +00:00
float color[4];
::memcpy((void*)color, (const void*)volume->render_color, 4 * sizeof(float));
::glUniform4fv(color_id, 1, (const GLfloat*)color);
}
else
::glColor4f(volume->render_color[0], volume->render_color[1], volume->render_color[2], volume->render_color[3]);
2018-03-09 09:40:42 +00:00
if (print_box_min_id != -1)
::glUniform3fv(print_box_min_id, 1, (const GLfloat*)print_box_min);
2018-03-09 09:40:42 +00:00
if (print_box_max_id != -1)
::glUniform3fv(print_box_max_id, 1, (const GLfloat*)print_box_max);
2018-03-09 09:40:42 +00:00
if (print_box_origin_id != -1)
{
float origin[4] = { (float)volume->origin.x, (float)volume->origin.y, (float)volume->origin.z, volume->outside_printer_detection_enabled ? 1.0f : 0.0f };
2018-03-09 09:40:42 +00:00
::glUniform4fv(print_box_origin_id, 1, (const GLfloat*)origin);
}
2018-03-09 09:40:42 +00:00
volume->render();
::glEnableClientState(GL_VERTEX_ARRAY);
::glEnableClientState(GL_NORMAL_ARRAY);
continue;
}
2018-03-09 09:40:42 +00:00
if (color_id >= 0)
::glUniform4fv(color_id, 1, (const GLfloat*)volume->render_color);
else
::glColor4f(volume->render_color[0], volume->render_color[1], volume->render_color[2], volume->render_color[3]);
2018-03-09 09:40:42 +00:00
if (print_box_min_id != -1)
::glUniform3fv(print_box_min_id, 1, (const GLfloat*)print_box_min);
if (print_box_max_id != -1)
::glUniform3fv(print_box_max_id, 1, (const GLfloat*)print_box_max);
if (print_box_origin_id != -1)
{
float origin[4] = { (float)volume->origin.x, (float)volume->origin.y, (float)volume->origin.z, volume->outside_printer_detection_enabled ? 1.0f : 0.0f };
2018-03-09 09:40:42 +00:00
::glUniform4fv(print_box_origin_id, 1, (const GLfloat*)origin);
}
::glBindBuffer(GL_ARRAY_BUFFER, volume->indexed_vertex_array.vertices_and_normals_interleaved_VBO_id);
::glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float)));
::glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr);
2018-03-09 09:40:42 +00:00
bool has_offset = (volume->origin.x != 0) || (volume->origin.y != 0) || (volume->origin.z != 0);
if (has_offset) {
::glPushMatrix();
::glTranslated(volume->origin.x, volume->origin.y, volume->origin.z);
2018-03-09 09:40:42 +00:00
}
if (n_triangles > 0) {
::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, volume->indexed_vertex_array.triangle_indices_VBO_id);
::glDrawElements(GL_TRIANGLES, n_triangles, GL_UNSIGNED_INT, (const void*)(volume->tverts_range.first * 4));
}
if (n_quads > 0) {
::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, volume->indexed_vertex_array.quad_indices_VBO_id);
::glDrawElements(GL_QUADS, n_quads, GL_UNSIGNED_INT, (const void*)(volume->qverts_range.first * 4));
}
2018-03-09 09:40:42 +00:00
if (has_offset)
::glPopMatrix();
}
::glBindBuffer(GL_ARRAY_BUFFER, 0);
::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
2018-03-09 09:40:42 +00:00
::glDisableClientState(GL_VERTEX_ARRAY);
::glDisableClientState(GL_NORMAL_ARRAY);
2018-03-09 09:40:42 +00:00
::glDisable(GL_BLEND);
}
void GLVolumeCollection::render_legacy() const
{
2018-03-09 09:40:42 +00:00
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glCullFace(GL_BACK);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
for (GLVolume *volume : this->volumes) {
assert(! volume->indexed_vertex_array.vertices_and_normals_interleaved_VBO_id);
if (!volume->is_active)
continue;
2018-01-17 09:39:05 +00:00
2018-03-09 09:40:42 +00:00
volume->set_render_color();
GLsizei n_triangles = GLsizei(std::min(volume->indexed_vertex_array.triangle_indices_size, volume->tverts_range.second - volume->tverts_range.first));
GLsizei n_quads = GLsizei(std::min(volume->indexed_vertex_array.quad_indices_size, volume->qverts_range.second - volume->qverts_range.first));
if (n_triangles + n_quads == 0)
{
2018-03-09 09:40:42 +00:00
::glDisableClientState(GL_VERTEX_ARRAY);
::glDisableClientState(GL_NORMAL_ARRAY);
2018-03-09 09:40:42 +00:00
::glColor4f(volume->render_color[0], volume->render_color[1], volume->render_color[2], volume->render_color[3]);
volume->render();
::glEnableClientState(GL_VERTEX_ARRAY);
::glEnableClientState(GL_NORMAL_ARRAY);
continue;
}
2018-03-09 09:40:42 +00:00
glColor4f(volume->render_color[0], volume->render_color[1], volume->render_color[2], volume->render_color[3]);
glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), volume->indexed_vertex_array.vertices_and_normals_interleaved.data() + 3);
glNormalPointer(GL_FLOAT, 6 * sizeof(float), volume->indexed_vertex_array.vertices_and_normals_interleaved.data());
bool has_offset = volume->origin.x != 0 || volume->origin.y != 0 || volume->origin.z != 0;
if (has_offset) {
glPushMatrix();
glTranslated(volume->origin.x, volume->origin.y, volume->origin.z);
}
if (n_triangles > 0)
glDrawElements(GL_TRIANGLES, n_triangles, GL_UNSIGNED_INT, volume->indexed_vertex_array.triangle_indices.data() + volume->tverts_range.first);
if (n_quads > 0)
glDrawElements(GL_QUADS, n_quads, GL_UNSIGNED_INT, volume->indexed_vertex_array.quad_indices.data() + volume->qverts_range.first);
if (has_offset)
2018-03-09 09:40:42 +00:00
glPopMatrix();
}
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
2018-03-09 09:40:42 +00:00
glDisable(GL_BLEND);
}
bool GLVolumeCollection::check_outside_state(const DynamicPrintConfig* config)
2018-03-09 09:40:42 +00:00
{
if (config == nullptr)
return false;
2018-03-09 09:40:42 +00:00
const ConfigOptionPoints* opt = dynamic_cast<const ConfigOptionPoints*>(config->option("bed_shape"));
if (opt == nullptr)
return false;
2018-03-09 09:40:42 +00:00
BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values));
BoundingBoxf3 print_volume(Pointf3(unscale(bed_box_2D.min.x), unscale(bed_box_2D.min.y), 0.0), Pointf3(unscale(bed_box_2D.max.x), unscale(bed_box_2D.max.y), config->opt_float("max_print_height")));
// Allow the objects to protrude below the print bed
print_volume.min.z = -1e10;
2018-03-09 09:40:42 +00:00
bool contained = true;
2018-03-09 09:40:42 +00:00
for (GLVolume* volume : this->volumes)
{
if (volume != nullptr)
2018-03-09 09:40:42 +00:00
{
bool state = print_volume.contains(volume->transformed_bounding_box());
contained &= state;
volume->is_outside = !state;
2018-03-09 09:40:42 +00:00
}
}
2018-03-09 09:40:42 +00:00
return contained;
}
void GLVolumeCollection::reset_outside_state()
{
for (GLVolume* volume : this->volumes)
{
if (volume != nullptr)
volume->is_outside = false;
2018-03-09 09:40:42 +00:00
}
}
2018-04-05 10:52:29 +00:00
void GLVolumeCollection::update_colors_by_extruder(const DynamicPrintConfig* config)
{
static const float inv_255 = 1.0f / 255.0f;
struct Color
{
std::string text;
unsigned char rgb[3];
Color()
: text("")
{
rgb[0] = 255;
rgb[1] = 255;
rgb[2] = 255;
}
void set(const std::string& text, unsigned char* rgb)
{
this->text = text;
::memcpy((void*)this->rgb, (const void*)rgb, 3 * sizeof(unsigned char));
}
};
if (config == nullptr)
return;
const ConfigOptionStrings* extruders_opt = dynamic_cast<const ConfigOptionStrings*>(config->option("extruder_colour"));
if (extruders_opt == nullptr)
return;
const ConfigOptionStrings* filamemts_opt = dynamic_cast<const ConfigOptionStrings*>(config->option("filament_colour"));
if (filamemts_opt == nullptr)
return;
unsigned int colors_count = std::max((unsigned int)extruders_opt->values.size(), (unsigned int)filamemts_opt->values.size());
if (colors_count == 0)
return;
std::vector<Color> colors(colors_count);
unsigned char rgb[3];
for (unsigned int i = 0; i < colors_count; ++i)
{
const std::string& txt_color = config->opt_string("extruder_colour", i);
if (PresetBundle::parse_color(txt_color, rgb))
{
colors[i].set(txt_color, rgb);
}
else
{
const std::string& txt_color = config->opt_string("filament_colour", i);
if (PresetBundle::parse_color(txt_color, rgb))
colors[i].set(txt_color, rgb);
}
}
for (GLVolume* volume : volumes)
{
if ((volume == nullptr) || volume->is_modifier || volume->is_wipe_tower)
continue;
int extruder_id = volume->extruder_id - 1;
if ((extruder_id < 0) || ((unsigned int)colors.size() <= extruder_id))
extruder_id = 0;
const Color& color = colors[extruder_id];
if (!color.text.empty())
{
for (int i = 0; i < 3; ++i)
{
volume->color[i] = (float)color.rgb[i] * inv_255;
}
}
}
}
std::vector<double> GLVolumeCollection::get_current_print_zs(bool active_only) const
{
// Collect layer top positions of all volumes.
std::vector<double> print_zs;
for (GLVolume *vol : this->volumes)
{
if (!active_only || vol->is_active)
append(print_zs, vol->print_zs);
}
std::sort(print_zs.begin(), print_zs.end());
// Replace intervals of layers with similar top positions with their average value.
int n = int(print_zs.size());
int k = 0;
for (int i = 0; i < n;) {
int j = i + 1;
coordf_t zmax = print_zs[i] + EPSILON;
for (; j < n && print_zs[j] <= zmax; ++ j) ;
print_zs[k ++] = (j > i + 1) ? (0.5 * (print_zs[i] + print_zs[j - 1])) : print_zs[i];
i = j;
}
if (k < n)
print_zs.erase(print_zs.begin() + k, print_zs.end());
return print_zs;
}
// caller is responsible for supplying NO lines with zero length
static void thick_lines_to_indexed_vertex_array(
const Lines &lines,
const std::vector<double> &widths,
const std::vector<double> &heights,
bool closed,
double top_z,
GLIndexedVertexArray &volume)
2015-01-17 23:36:21 +00:00
{
assert(! lines.empty());
if (lines.empty())
return;
#define LEFT 0
#define RIGHT 1
#define TOP 2
#define BOTTOM 3
// right, left, top, bottom
int idx_prev[4] = { -1, -1, -1, -1 };
double bottom_z_prev = 0.;
Pointf b1_prev;
Vectorf v_prev;
int idx_initial[4] = { -1, -1, -1, -1 };
double width_initial = 0.;
double bottom_z_initial = 0.0;
2015-01-17 23:36:21 +00:00
// loop once more in case of closed loops
size_t lines_end = closed ? (lines.size() + 1) : lines.size();
for (size_t ii = 0; ii < lines_end; ++ ii) {
size_t i = (ii == lines.size()) ? 0 : ii;
const Line &line = lines[i];
double len = unscale(line.length());
double inv_len = 1.0 / len;
double bottom_z = top_z - heights[i];
double middle_z = 0.5 * (top_z + bottom_z);
double width = widths[i];
bool is_first = (ii == 0);
bool is_last = (ii == lines_end - 1);
bool is_closing = closed && is_last;
2015-01-17 23:36:21 +00:00
Vectorf v = Vectorf::new_unscale(line.vector());
v.scale(inv_len);
2015-01-17 23:36:21 +00:00
Pointf a = Pointf::new_unscale(line.a);
Pointf b = Pointf::new_unscale(line.b);
Pointf a1 = a;
Pointf a2 = a;
Pointf b1 = b;
Pointf b2 = b;
{
double dist = 0.5 * width; // scaled
double dx = dist * v.x;
double dy = dist * v.y;
a1.translate(+dy, -dx);
a2.translate(-dy, +dx);
b1.translate(+dy, -dx);
b2.translate(-dy, +dx);
}
2015-01-17 23:36:21 +00:00
// calculate new XY normals
Vector n = line.normal();
Vectorf3 xy_right_normal = Vectorf3::new_unscale(n.x, n.y, 0);
xy_right_normal.scale(inv_len);
int idx_a[4];
int idx_b[4];
int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6);
bool bottom_z_different = bottom_z_prev != bottom_z;
bottom_z_prev = bottom_z;
if (!is_first && bottom_z_different)
{
// Found a change of the layer thickness -> Add a cap at the end of the previous segment.
volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]);
}
// Share top / bottom vertices if possible.
if (is_first) {
idx_a[TOP] = idx_last++;
volume.push_geometry(a.x, a.y, top_z , 0., 0., 1.);
} else {
idx_a[TOP] = idx_prev[TOP];
}
if (is_first || bottom_z_different) {
// Start of the 1st line segment or a change of the layer thickness while maintaining the print_z.
idx_a[BOTTOM] = idx_last ++;
volume.push_geometry(a.x, a.y, bottom_z, 0., 0., -1.);
idx_a[LEFT ] = idx_last ++;
volume.push_geometry(a2.x, a2.y, middle_z, -xy_right_normal.x, -xy_right_normal.y, -xy_right_normal.z);
idx_a[RIGHT] = idx_last ++;
volume.push_geometry(a1.x, a1.y, middle_z, xy_right_normal.x, xy_right_normal.y, xy_right_normal.z);
}
else {
idx_a[BOTTOM] = idx_prev[BOTTOM];
}
if (is_first) {
// Start of the 1st line segment.
width_initial = width;
bottom_z_initial = bottom_z;
memcpy(idx_initial, idx_a, sizeof(int) * 4);
} else {
// Continuing a previous segment.
// Share left / right vertices if possible.
double v_dot = dot(v_prev, v);
bool sharp = v_dot < 0.707; // sin(45 degrees)
if (sharp) {
if (!bottom_z_different)
{
// Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn.
idx_a[RIGHT] = idx_last++;
volume.push_geometry(a1.x, a1.y, middle_z, xy_right_normal.x, xy_right_normal.y, xy_right_normal.z);
idx_a[LEFT] = idx_last++;
volume.push_geometry(a2.x, a2.y, middle_z, -xy_right_normal.x, -xy_right_normal.y, -xy_right_normal.z);
}
}
if (v_dot > 0.9) {
if (!bottom_z_different)
{
// The two successive segments are nearly collinear.
idx_a[LEFT ] = idx_prev[LEFT];
idx_a[RIGHT] = idx_prev[RIGHT];
}
}
else if (!sharp) {
if (!bottom_z_different)
{
// Create a sharp corner with an overshot and average the left / right normals.
// At the crease angle of 45 degrees, the overshot at the corner will be less than (1-1/cos(PI/8)) = 8.2% over an arc.
Pointf intersection;
Geometry::ray_ray_intersection(b1_prev, v_prev, a1, v, intersection);
a1 = intersection;
a2 = 2. * a - intersection;
assert(length(a1.vector_to(a)) < width);
assert(length(a2.vector_to(a)) < width);
float *n_left_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT ] * 6;
float *p_left_prev = n_left_prev + 3;
float *n_right_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6;
float *p_right_prev = n_right_prev + 3;
p_left_prev [0] = float(a2.x);
p_left_prev [1] = float(a2.y);
p_right_prev[0] = float(a1.x);
p_right_prev[1] = float(a1.y);
xy_right_normal.x += n_right_prev[0];
xy_right_normal.y += n_right_prev[1];
xy_right_normal.scale(1. / length(xy_right_normal));
n_left_prev [0] = float(-xy_right_normal.x);
n_left_prev [1] = float(-xy_right_normal.y);
n_right_prev[0] = float( xy_right_normal.x);
n_right_prev[1] = float( xy_right_normal.y);
idx_a[LEFT ] = idx_prev[LEFT ];
idx_a[RIGHT] = idx_prev[RIGHT];
}
}
else if (cross(v_prev, v) > 0.) {
// Right turn. Fill in the right turn wedge.
volume.push_triangle(idx_prev[RIGHT], idx_a [RIGHT], idx_prev[TOP] );
volume.push_triangle(idx_prev[RIGHT], idx_prev[BOTTOM], idx_a [RIGHT] );
} else {
// Left turn. Fill in the left turn wedge.
volume.push_triangle(idx_prev[LEFT], idx_prev[TOP], idx_a [LEFT] );
volume.push_triangle(idx_prev[LEFT], idx_a [LEFT], idx_prev[BOTTOM]);
}
if (is_closing) {
if (!sharp) {
if (!bottom_z_different)
{
// Closing a loop with smooth transition. Unify the closing left / right vertices.
memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[LEFT ] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT ] * 6, sizeof(float) * 6);
memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[RIGHT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6, sizeof(float) * 6);
volume.vertices_and_normals_interleaved.erase(volume.vertices_and_normals_interleaved.end() - 12, volume.vertices_and_normals_interleaved.end());
// Replace the left / right vertex indices to point to the start of the loop.
for (size_t u = volume.quad_indices.size() - 16; u < volume.quad_indices.size(); ++ u) {
if (volume.quad_indices[u] == idx_prev[LEFT])
volume.quad_indices[u] = idx_initial[LEFT];
else if (volume.quad_indices[u] == idx_prev[RIGHT])
volume.quad_indices[u] = idx_initial[RIGHT];
}
}
2015-01-17 23:36:21 +00:00
}
// This is the last iteration, only required to solve the transition.
break;
2015-01-17 23:36:21 +00:00
}
}
// Only new allocate top / bottom vertices, if not closing a loop.
if (is_closing) {
idx_b[TOP] = idx_initial[TOP];
} else {
idx_b[TOP] = idx_last ++;
volume.push_geometry(b.x, b.y, top_z , 0., 0., 1.);
}
if (is_closing && (width == width_initial) && (bottom_z == bottom_z_initial)) {
idx_b[BOTTOM] = idx_initial[BOTTOM];
} else {
idx_b[BOTTOM] = idx_last ++;
volume.push_geometry(b.x, b.y, bottom_z, 0., 0., -1.);
}
// Generate new vertices for the end of this line segment.
idx_b[LEFT ] = idx_last ++;
volume.push_geometry(b2.x, b2.y, middle_z, -xy_right_normal.x, -xy_right_normal.y, -xy_right_normal.z);
idx_b[RIGHT ] = idx_last ++;
volume.push_geometry(b1.x, b1.y, middle_z, xy_right_normal.x, xy_right_normal.y, xy_right_normal.z);
memcpy(idx_prev, idx_b, 4 * sizeof(int));
bottom_z_prev = bottom_z;
b1_prev = b1;
v_prev = v;
if (bottom_z_different)
{
// Found a change of the layer thickness -> Add a cap at the beginning of this segment.
volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]);
}
if (! closed) {
// Terminate open paths with caps.
if (is_first && !bottom_z_different)
volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]);
// We don't use 'else' because both cases are true if we have only one line.
if (is_last && !bottom_z_different)
volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]);
2015-01-17 23:36:21 +00:00
}
// Add quads for a straight hollow tube-like segment.
2015-01-17 23:36:21 +00:00
// bottom-right face
volume.push_quad(idx_a[BOTTOM], idx_b[BOTTOM], idx_b[RIGHT], idx_a[RIGHT]);
2015-01-17 23:36:21 +00:00
// top-right face
volume.push_quad(idx_a[RIGHT], idx_b[RIGHT], idx_b[TOP], idx_a[TOP]);
2015-01-17 23:36:21 +00:00
// top-left face
volume.push_quad(idx_a[TOP], idx_b[TOP], idx_b[LEFT], idx_a[LEFT]);
2015-01-17 23:36:21 +00:00
// bottom-left face
volume.push_quad(idx_a[LEFT], idx_b[LEFT], idx_b[BOTTOM], idx_a[BOTTOM]);
}
#undef LEFT
#undef RIGHT
#undef TOP
#undef BOTTOM
}
// caller is responsible for supplying NO lines with zero length
static void thick_lines_to_indexed_vertex_array(const Lines3& lines,
const std::vector<double>& widths,
const std::vector<double>& heights,
bool closed,
GLIndexedVertexArray& volume)
{
assert(!lines.empty());
if (lines.empty())
return;
#define LEFT 0
#define RIGHT 1
#define TOP 2
#define BOTTOM 3
// left, right, top, bottom
int idx_initial[4] = { -1, -1, -1, -1 };
int idx_prev[4] = { -1, -1, -1, -1 };
double z_prev = 0.0;
Vectorf3 n_right_prev;
Vectorf3 n_top_prev;
Vectorf3 unit_v_prev;
double width_initial = 0.0;
// new vertices around the line endpoints
// left, right, top, bottom
Pointf3 a[4];
Pointf3 b[4];
// loop once more in case of closed loops
size_t lines_end = closed ? (lines.size() + 1) : lines.size();
for (size_t ii = 0; ii < lines_end; ++ii)
{
size_t i = (ii == lines.size()) ? 0 : ii;
const Line3& line = lines[i];
double height = heights[i];
double width = widths[i];
Vectorf3 unit_v = normalize(Vectorf3::new_unscale(line.vector()));
Vectorf3 n_top;
Vectorf3 n_right;
Vectorf3 unit_positive_z(0.0, 0.0, 1.0);
if ((line.a.x == line.b.x) && (line.a.y == line.b.y))
{
// vertical segment
n_right = (line.a.z < line.b.z) ? Vectorf3(-1.0, 0.0, 0.0) : Vectorf3(1.0, 0.0, 0.0);
n_top = Vectorf3(0.0, 1.0, 0.0);
}
else
{
// generic segment
n_right = normalize(cross(unit_v, unit_positive_z));
n_top = normalize(cross(n_right, unit_v));
}
Vectorf3 rl_displacement = 0.5 * width * n_right;
Vectorf3 tb_displacement = 0.5 * height * n_top;
Pointf3 l_a = Pointf3::new_unscale(line.a);
Pointf3 l_b = Pointf3::new_unscale(line.b);
a[RIGHT] = l_a + rl_displacement;
a[LEFT] = l_a - rl_displacement;
a[TOP] = l_a + tb_displacement;
a[BOTTOM] = l_a - tb_displacement;
b[RIGHT] = l_b + rl_displacement;
b[LEFT] = l_b - rl_displacement;
b[TOP] = l_b + tb_displacement;
b[BOTTOM] = l_b - tb_displacement;
Vectorf3 n_bottom = -n_top;
Vectorf3 n_left = -n_right;
int idx_a[4];
int idx_b[4];
int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6);
bool z_different = (z_prev != l_a.z);
z_prev = l_b.z;
// Share top / bottom vertices if possible.
if (ii == 0)
{
idx_a[TOP] = idx_last++;
volume.push_geometry(a[TOP], n_top);
}
else
idx_a[TOP] = idx_prev[TOP];
if ((ii == 0) || z_different)
{
// Start of the 1st line segment or a change of the layer thickness while maintaining the print_z.
idx_a[BOTTOM] = idx_last++;
volume.push_geometry(a[BOTTOM], n_bottom);
idx_a[LEFT] = idx_last++;
volume.push_geometry(a[LEFT], n_left);
idx_a[RIGHT] = idx_last++;
volume.push_geometry(a[RIGHT], n_right);
}
else
idx_a[BOTTOM] = idx_prev[BOTTOM];
if (ii == 0)
{
// Start of the 1st line segment.
width_initial = width;
::memcpy(idx_initial, idx_a, sizeof(int) * 4);
}
else
{
// Continuing a previous segment.
// Share left / right vertices if possible.
double v_dot = dot(unit_v_prev, unit_v);
bool is_sharp = v_dot < 0.707; // sin(45 degrees)
bool is_right_turn = dot(n_top_prev, cross(unit_v_prev, unit_v)) > 0.0;
if (is_sharp)
{
// Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn.
idx_a[RIGHT] = idx_last++;
volume.push_geometry(a[RIGHT], n_right);
idx_a[LEFT] = idx_last++;
volume.push_geometry(a[LEFT], n_left);
}
if (v_dot > 0.9)
{
// The two successive segments are nearly collinear.
idx_a[LEFT] = idx_prev[LEFT];
idx_a[RIGHT] = idx_prev[RIGHT];
}
else if (!is_sharp)
{
// Create a sharp corner with an overshot and average the left / right normals.
// At the crease angle of 45 degrees, the overshot at the corner will be less than (1-1/cos(PI/8)) = 8.2% over an arc.
// averages normals
Vectorf3 average_n_right = normalize(0.5 * (n_right + n_right_prev));
Vectorf3 average_n_left = -average_n_right;
Vectorf3 average_rl_displacement = 0.5 * width * average_n_right;
// updates vertices around a
a[RIGHT] = l_a + average_rl_displacement;
a[LEFT] = l_a - average_rl_displacement;
// updates previous line normals
float* normal_left_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT] * 6;
normal_left_prev[0] = float(average_n_left.x);
normal_left_prev[1] = float(average_n_left.y);
normal_left_prev[2] = float(average_n_left.z);
float* normal_right_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6;
normal_right_prev[0] = float(average_n_right.x);
normal_right_prev[1] = float(average_n_right.y);
normal_right_prev[2] = float(average_n_right.z);
// updates previous line's vertices around b
float* b_left_prev = normal_left_prev + 3;
b_left_prev[0] = float(a[LEFT].x);
b_left_prev[1] = float(a[LEFT].y);
b_left_prev[2] = float(a[LEFT].z);
float* b_right_prev = normal_right_prev + 3;
b_right_prev[0] = float(a[RIGHT].x);
b_right_prev[1] = float(a[RIGHT].y);
b_right_prev[2] = float(a[RIGHT].z);
idx_a[LEFT] = idx_prev[LEFT];
idx_a[RIGHT] = idx_prev[RIGHT];
}
else if (is_right_turn)
{
// Right turn. Fill in the right turn wedge.
volume.push_triangle(idx_prev[RIGHT], idx_a[RIGHT], idx_prev[TOP]);
volume.push_triangle(idx_prev[RIGHT], idx_prev[BOTTOM], idx_a[RIGHT]);
}
else
{
// Left turn. Fill in the left turn wedge.
volume.push_triangle(idx_prev[LEFT], idx_prev[TOP], idx_a[LEFT]);
volume.push_triangle(idx_prev[LEFT], idx_a[LEFT], idx_prev[BOTTOM]);
}
if (ii == lines.size())
{
if (!is_sharp)
{
// Closing a loop with smooth transition. Unify the closing left / right vertices.
::memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[LEFT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT] * 6, sizeof(float) * 6);
::memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[RIGHT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6, sizeof(float) * 6);
volume.vertices_and_normals_interleaved.erase(volume.vertices_and_normals_interleaved.end() - 12, volume.vertices_and_normals_interleaved.end());
// Replace the left / right vertex indices to point to the start of the loop.
for (size_t u = volume.quad_indices.size() - 16; u < volume.quad_indices.size(); ++u)
{
if (volume.quad_indices[u] == idx_prev[LEFT])
volume.quad_indices[u] = idx_initial[LEFT];
else if (volume.quad_indices[u] == idx_prev[RIGHT])
volume.quad_indices[u] = idx_initial[RIGHT];
}
}
// This is the last iteration, only required to solve the transition.
break;
}
}
// Only new allocate top / bottom vertices, if not closing a loop.
if (closed && (ii + 1 == lines.size()))
idx_b[TOP] = idx_initial[TOP];
else
{
idx_b[TOP] = idx_last++;
volume.push_geometry(b[TOP], n_top);
}
if (closed && (ii + 1 == lines.size()) && (width == width_initial))
idx_b[BOTTOM] = idx_initial[BOTTOM];
else
{
idx_b[BOTTOM] = idx_last++;
volume.push_geometry(b[BOTTOM], n_bottom);
}
// Generate new vertices for the end of this line segment.
idx_b[LEFT] = idx_last++;
volume.push_geometry(b[LEFT], n_left);
idx_b[RIGHT] = idx_last++;
volume.push_geometry(b[RIGHT], n_right);
::memcpy(idx_prev, idx_b, 4 * sizeof(int));
n_right_prev = n_right;
n_top_prev = n_top;
unit_v_prev = unit_v;
if (!closed)
{
// Terminate open paths with caps.
if (i == 0)
volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]);
// We don't use 'else' because both cases are true if we have only one line.
if (i + 1 == lines.size())
volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]);
}
// Add quads for a straight hollow tube-like segment.
// bottom-right face
volume.push_quad(idx_a[BOTTOM], idx_b[BOTTOM], idx_b[RIGHT], idx_a[RIGHT]);
// top-right face
volume.push_quad(idx_a[RIGHT], idx_b[RIGHT], idx_b[TOP], idx_a[TOP]);
// top-left face
volume.push_quad(idx_a[TOP], idx_b[TOP], idx_b[LEFT], idx_a[LEFT]);
// bottom-left face
volume.push_quad(idx_a[LEFT], idx_b[LEFT], idx_b[BOTTOM], idx_a[BOTTOM]);
}
#undef LEFT
#undef RIGHT
#undef TOP
#undef BOTTOM
}
static void point_to_indexed_vertex_array(const Point3& point,
double width,
double height,
GLIndexedVertexArray& volume)
{
// builds a double piramid, with vertices on the local axes, around the point
Pointf3 center = Pointf3::new_unscale(point);
double scale_factor = 1.0;
double w = scale_factor * width;
double h = scale_factor * height;
// new vertices ids
int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6);
int idxs[6];
for (int i = 0; i < 6; ++i)
{
idxs[i] = idx_last + i;
}
Vectorf3 displacement_x(w, 0.0, 0.0);
Vectorf3 displacement_y(0.0, w, 0.0);
Vectorf3 displacement_z(0.0, 0.0, h);
Vectorf3 unit_x(1.0, 0.0, 0.0);
Vectorf3 unit_y(0.0, 1.0, 0.0);
Vectorf3 unit_z(0.0, 0.0, 1.0);
// vertices
volume.push_geometry(center - displacement_x, -unit_x); // idxs[0]
volume.push_geometry(center + displacement_x, unit_x); // idxs[1]
volume.push_geometry(center - displacement_y, -unit_y); // idxs[2]
volume.push_geometry(center + displacement_y, unit_y); // idxs[3]
volume.push_geometry(center - displacement_z, -unit_z); // idxs[4]
volume.push_geometry(center + displacement_z, unit_z); // idxs[5]
// top piramid faces
volume.push_triangle(idxs[0], idxs[2], idxs[5]);
volume.push_triangle(idxs[2], idxs[1], idxs[5]);
volume.push_triangle(idxs[1], idxs[3], idxs[5]);
volume.push_triangle(idxs[3], idxs[0], idxs[5]);
// bottom piramid faces
volume.push_triangle(idxs[2], idxs[0], idxs[4]);
volume.push_triangle(idxs[1], idxs[2], idxs[4]);
volume.push_triangle(idxs[3], idxs[1], idxs[4]);
volume.push_triangle(idxs[0], idxs[3], idxs[4]);
}
//##################################################################################################################
void _3DScene::thick_lines_to_verts(
//static void thick_lines_to_verts(
//##################################################################################################################
const Lines &lines,
const std::vector<double> &widths,
const std::vector<double> &heights,
bool closed,
double top_z,
GLVolume &volume)
{
thick_lines_to_indexed_vertex_array(lines, widths, heights, closed, top_z, volume.indexed_vertex_array);
2015-01-17 23:36:21 +00:00
}
//##################################################################################################################
void _3DScene::thick_lines_to_verts(const Lines3& lines,
//static void thick_lines_to_verts(const Lines3& lines,
//##################################################################################################################
const std::vector<double>& widths,
const std::vector<double>& heights,
bool closed,
GLVolume& volume)
{
thick_lines_to_indexed_vertex_array(lines, widths, heights, closed, volume.indexed_vertex_array);
}
static void thick_point_to_verts(const Point3& point,
double width,
double height,
GLVolume& volume)
{
point_to_indexed_vertex_array(point, width, height, volume.indexed_vertex_array);
}
// Fill in the qverts and tverts with quads and triangles for the extrusion_path.
2018-06-05 08:56:55 +00:00
//##################################################################################################################
void _3DScene::extrusionentity_to_verts(const ExtrusionPath &extrusion_path, float print_z, GLVolume &volume)
//static inline void extrusionentity_to_verts(const ExtrusionPath &extrusion_path, float print_z, GLVolume &volume)
//##################################################################################################################
{
Lines lines = extrusion_path.polyline.lines();
std::vector<double> widths(lines.size(), extrusion_path.width);
std::vector<double> heights(lines.size(), extrusion_path.height);
thick_lines_to_verts(lines, widths, heights, false, print_z, volume);
}
// Fill in the qverts and tverts with quads and triangles for the extrusion_path.
2018-06-05 08:56:55 +00:00
//##################################################################################################################
void _3DScene::extrusionentity_to_verts(const ExtrusionPath &extrusion_path, float print_z, const Point &copy, GLVolume &volume)
//static inline void extrusionentity_to_verts(const ExtrusionPath &extrusion_path, float print_z, const Point &copy, GLVolume &volume)
//##################################################################################################################
{
Polyline polyline = extrusion_path.polyline;
polyline.remove_duplicate_points();
polyline.translate(copy);
Lines lines = polyline.lines();
std::vector<double> widths(lines.size(), extrusion_path.width);
std::vector<double> heights(lines.size(), extrusion_path.height);
thick_lines_to_verts(lines, widths, heights, false, print_z, volume);
}
// Fill in the qverts and tverts with quads and triangles for the extrusion_loop.
2018-06-05 08:56:55 +00:00
//##################################################################################################################
void _3DScene::extrusionentity_to_verts(const ExtrusionLoop &extrusion_loop, float print_z, const Point &copy, GLVolume &volume)
//static inline void extrusionentity_to_verts(const ExtrusionLoop &extrusion_loop, float print_z, const Point &copy, GLVolume &volume)
//##################################################################################################################
{
Lines lines;
std::vector<double> widths;
std::vector<double> heights;
for (const ExtrusionPath &extrusion_path : extrusion_loop.paths) {
Polyline polyline = extrusion_path.polyline;
polyline.remove_duplicate_points();
polyline.translate(copy);
Lines lines_this = polyline.lines();
append(lines, lines_this);
widths.insert(widths.end(), lines_this.size(), extrusion_path.width);
heights.insert(heights.end(), lines_this.size(), extrusion_path.height);
}
thick_lines_to_verts(lines, widths, heights, true, print_z, volume);
}
// Fill in the qverts and tverts with quads and triangles for the extrusion_multi_path.
2018-06-05 08:56:55 +00:00
//##################################################################################################################
void _3DScene::extrusionentity_to_verts(const ExtrusionMultiPath &extrusion_multi_path, float print_z, const Point &copy, GLVolume &volume)
//static inline void extrusionentity_to_verts(const ExtrusionMultiPath &extrusion_multi_path, float print_z, const Point &copy, GLVolume &volume)
//##################################################################################################################
{
Lines lines;
std::vector<double> widths;
std::vector<double> heights;
for (const ExtrusionPath &extrusion_path : extrusion_multi_path.paths) {
Polyline polyline = extrusion_path.polyline;
polyline.remove_duplicate_points();
polyline.translate(copy);
Lines lines_this = polyline.lines();
append(lines, lines_this);
widths.insert(widths.end(), lines_this.size(), extrusion_path.width);
heights.insert(heights.end(), lines_this.size(), extrusion_path.height);
}
thick_lines_to_verts(lines, widths, heights, false, print_z, volume);
}
2018-06-05 08:56:55 +00:00
//##################################################################################################################
//static void extrusionentity_to_verts(const ExtrusionEntity *extrusion_entity, float print_z, const Point &copy, GLVolume &volume);
//##################################################################################################################
2018-06-05 08:56:55 +00:00
//##################################################################################################################
void _3DScene::extrusionentity_to_verts(const ExtrusionEntityCollection &extrusion_entity_collection, float print_z, const Point &copy, GLVolume &volume)
//static inline void extrusionentity_to_verts(const ExtrusionEntityCollection &extrusion_entity_collection, float print_z, const Point &copy, GLVolume &volume)
//##################################################################################################################
{
for (const ExtrusionEntity *extrusion_entity : extrusion_entity_collection.entities)
extrusionentity_to_verts(extrusion_entity, print_z, copy, volume);
}
2018-06-05 08:56:55 +00:00
//##################################################################################################################
void _3DScene::extrusionentity_to_verts(const ExtrusionEntity *extrusion_entity, float print_z, const Point &copy, GLVolume &volume)
//static void extrusionentity_to_verts(const ExtrusionEntity *extrusion_entity, float print_z, const Point &copy, GLVolume &volume)
//##################################################################################################################
{
if (extrusion_entity != nullptr) {
auto *extrusion_path = dynamic_cast<const ExtrusionPath*>(extrusion_entity);
if (extrusion_path != nullptr)
extrusionentity_to_verts(*extrusion_path, print_z, copy, volume);
else {
auto *extrusion_loop = dynamic_cast<const ExtrusionLoop*>(extrusion_entity);
if (extrusion_loop != nullptr)
extrusionentity_to_verts(*extrusion_loop, print_z, copy, volume);
else {
auto *extrusion_multi_path = dynamic_cast<const ExtrusionMultiPath*>(extrusion_entity);
if (extrusion_multi_path != nullptr)
extrusionentity_to_verts(*extrusion_multi_path, print_z, copy, volume);
else {
auto *extrusion_entity_collection = dynamic_cast<const ExtrusionEntityCollection*>(extrusion_entity);
if (extrusion_entity_collection != nullptr)
extrusionentity_to_verts(*extrusion_entity_collection, print_z, copy, volume);
else {
CONFESS("Unexpected extrusion_entity type in to_verts()");
}
}
}
}
}
}
2018-06-05 08:56:55 +00:00
//##################################################################################################################
void _3DScene::polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume)
//static void polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume)
//##################################################################################################################
{
Lines3 lines = polyline.lines();
std::vector<double> widths(lines.size(), width);
std::vector<double> heights(lines.size(), height);
thick_lines_to_verts(lines, widths, heights, false, volume);
}
2018-06-05 08:56:55 +00:00
//##################################################################################################################
void _3DScene::point3_to_verts(const Point3& point, double width, double height, GLVolume& volume)
//static void point3_to_verts(const Point3& point, double width, double height, GLVolume& volume)
//##################################################################################################################
{
thick_point_to_verts(point, width, height, volume);
}
2018-06-05 08:56:55 +00:00
//##################################################################################################################
//_3DScene::GCodePreviewVolumeIndex _3DScene::s_gcode_preview_volume_index;
//##################################################################################################################
2018-01-16 13:59:06 +00:00
_3DScene::LegendTexture _3DScene::s_legend_texture;
2018-03-09 09:40:42 +00:00
_3DScene::WarningTexture _3DScene::s_warning_texture;
2018-05-09 08:47:04 +00:00
//##################################################################################################################
GUI::GLCanvas3DManager _3DScene::s_canvas_mgr;
//##################################################################################################################
2018-03-09 09:40:42 +00:00
unsigned int _3DScene::TextureBase::finalize()
{
if (!m_data.empty()) {
// sends buffer to gpu
::glGenTextures(1, &m_tex_id);
::glBindTexture(GL_TEXTURE_2D, m_tex_id);
::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, (GLsizei)m_tex_width, (GLsizei)m_tex_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const GLvoid*)m_data.data());
::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1);
::glBindTexture(GL_TEXTURE_2D, 0);
m_data.clear();
}
return (m_tex_width > 0 && m_tex_height > 0) ? m_tex_id : 0;
}
void _3DScene::TextureBase::_destroy_texture()
{
if (m_tex_id > 0)
{
::glDeleteTextures(1, &m_tex_id);
m_tex_id = 0;
m_tex_height = 0;
m_tex_width = 0;
}
m_data.clear();
}
const unsigned char _3DScene::WarningTexture::Background_Color[3] = { 9, 91, 134 };
const unsigned char _3DScene::WarningTexture::Opacity = 255;
// Generate a texture data, but don't load it into the GPU yet, as the GPU context may not yet be valid.
bool _3DScene::WarningTexture::generate(const std::string& msg)
{
// Mark the texture as released, but don't release the texture from the GPU yet.
m_tex_width = m_tex_height = 0;
m_data.clear();
if (msg.empty())
return false;
wxMemoryDC memDC;
// select default font
memDC.SetFont(wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT));
// calculates texture size
wxCoord w, h;
memDC.GetTextExtent(msg, &w, &h);
m_tex_width = (unsigned int)w;
m_tex_height = (unsigned int)h;
// generates bitmap
wxBitmap bitmap(m_tex_width, m_tex_height);
#if defined(__APPLE__) || defined(_MSC_VER)
bitmap.UseAlpha();
#endif
memDC.SelectObject(bitmap);
memDC.SetBackground(wxBrush(wxColour(Background_Color[0], Background_Color[1], Background_Color[2])));
memDC.Clear();
memDC.SetTextForeground(*wxWHITE);
// draw message
memDC.DrawText(msg, 0, 0);
memDC.SelectObject(wxNullBitmap);
// Convert the bitmap into a linear data ready to be loaded into the GPU.
{
wxImage image = bitmap.ConvertToImage();
image.SetMaskColour(Background_Color[0], Background_Color[1], Background_Color[2]);
// prepare buffer
m_data.assign(4 * m_tex_width * m_tex_height, 0);
for (unsigned int h = 0; h < m_tex_height; ++h)
{
unsigned int hh = h * m_tex_width;
unsigned char* px_ptr = m_data.data() + 4 * hh;
for (unsigned int w = 0; w < m_tex_width; ++w)
{
*px_ptr++ = image.GetRed(w, h);
*px_ptr++ = image.GetGreen(w, h);
*px_ptr++ = image.GetBlue(w, h);
*px_ptr++ = image.IsTransparent(w, h) ? 0 : Opacity;
}
}
}
return true;
}
2018-01-16 13:59:06 +00:00
const unsigned char _3DScene::LegendTexture::Squares_Border_Color[3] = { 64, 64, 64 };
const unsigned char _3DScene::LegendTexture::Background_Color[3] = { 9, 91, 134 };
const unsigned char _3DScene::LegendTexture::Opacity = 255;
// Generate a texture data, but don't load it into the GPU yet, as the GPU context may not yet be valid.
bool _3DScene::LegendTexture::generate(const GCodePreviewData& preview_data, const std::vector<float>& tool_colors)
2018-01-16 13:59:06 +00:00
{
// Mark the texture as released, but don't release the texture from the GPU yet.
m_tex_width = m_tex_height = 0;
m_data.clear();
2018-01-16 13:59:06 +00:00
// collects items to render
auto title = GUI::L_str(preview_data.get_legend_title());
const GCodePreviewData::LegendItemsList& items = preview_data.get_legend_items(tool_colors);
2018-01-16 13:59:06 +00:00
unsigned int items_count = (unsigned int)items.size();
if (items_count == 0)
// nothing to render, return
return false;
wxMemoryDC memDC;
// select default font
memDC.SetFont(wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT));
// calculates texture size
wxCoord w, h;
memDC.GetTextExtent(title, &w, &h);
unsigned int title_width = (unsigned int)w;
unsigned int title_height = (unsigned int)h;
unsigned int max_text_width = 0;
unsigned int max_text_height = 0;
for (const GCodePreviewData::LegendItem& item : items)
2018-01-16 13:59:06 +00:00
{
memDC.GetTextExtent(GUI::from_u8(item.text), &w, &h);
2018-01-16 13:59:06 +00:00
max_text_width = std::max(max_text_width, (unsigned int)w);
max_text_height = std::max(max_text_height, (unsigned int)h);
}
m_tex_width = std::max(2 * Px_Border + title_width, 2 * (Px_Border + Px_Square_Contour) + Px_Square + Px_Text_Offset + max_text_width);
m_tex_height = 2 * (Px_Border + Px_Square_Contour) + title_height + Px_Title_Offset + items_count * Px_Square;
if (items_count > 1)
m_tex_height += (items_count - 1) * Px_Square_Contour;
// generates bitmap
wxBitmap bitmap(m_tex_width, m_tex_height);
#if defined(__APPLE__) || defined(_MSC_VER)
bitmap.UseAlpha();
#endif
memDC.SelectObject(bitmap);
memDC.SetBackground(wxBrush(wxColour(Background_Color[0], Background_Color[1], Background_Color[2])));
memDC.Clear();
memDC.SetTextForeground(*wxWHITE);
// draw title
unsigned int title_x = Px_Border;
unsigned int title_y = Px_Border;
memDC.DrawText(title, title_x, title_y);
// draw icons contours as background
unsigned int squares_contour_x = Px_Border;
unsigned int squares_contour_y = Px_Border + title_height + Px_Title_Offset;
unsigned int squares_contour_width = Px_Square + 2 * Px_Square_Contour;
unsigned int squares_contour_height = items_count * Px_Square + 2 * Px_Square_Contour;
if (items_count > 1)
squares_contour_height += (items_count - 1) * Px_Square_Contour;
wxColour color(Squares_Border_Color[0], Squares_Border_Color[1], Squares_Border_Color[2]);
wxPen pen(color);
wxBrush brush(color);
memDC.SetPen(pen);
memDC.SetBrush(brush);
memDC.DrawRectangle(wxRect(squares_contour_x, squares_contour_y, squares_contour_width, squares_contour_height));
// draw items (colored icon + text)
unsigned int icon_x = squares_contour_x + Px_Square_Contour;
unsigned int icon_x_inner = icon_x + 1;
unsigned int icon_y = squares_contour_y + Px_Square_Contour;
unsigned int icon_y_step = Px_Square + Px_Square_Contour;
unsigned int text_x = icon_x + Px_Square + Px_Text_Offset;
unsigned int text_y_offset = (Px_Square - max_text_height) / 2;
unsigned int px_inner_square = Px_Square - 2;
for (const GCodePreviewData::LegendItem& item : items)
2018-01-16 13:59:06 +00:00
{
// draw darker icon perimeter
const std::vector<unsigned char>& item_color_bytes = item.color.as_bytes();
wxImage::HSVValue dark_hsv = wxImage::RGBtoHSV(wxImage::RGBValue(item_color_bytes[0], item_color_bytes[1], item_color_bytes[2]));
dark_hsv.value *= 0.75;
wxImage::RGBValue dark_rgb = wxImage::HSVtoRGB(dark_hsv);
color.Set(dark_rgb.red, dark_rgb.green, dark_rgb.blue, item_color_bytes[3]);
pen.SetColour(color);
brush.SetColour(color);
memDC.SetPen(pen);
memDC.SetBrush(brush);
memDC.DrawRectangle(wxRect(icon_x, icon_y, Px_Square, Px_Square));
// draw icon interior
color.Set(item_color_bytes[0], item_color_bytes[1], item_color_bytes[2], item_color_bytes[3]);
pen.SetColour(color);
brush.SetColour(color);
memDC.SetPen(pen);
memDC.SetBrush(brush);
memDC.DrawRectangle(wxRect(icon_x_inner, icon_y + 1, px_inner_square, px_inner_square));
// draw text
memDC.DrawText(GUI::from_u8(item.text), text_x, icon_y + text_y_offset);
2018-01-16 13:59:06 +00:00
// update y
icon_y += icon_y_step;
}
memDC.SelectObject(wxNullBitmap);
// Convert the bitmap into a linear data ready to be loaded into the GPU.
2018-01-16 13:59:06 +00:00
{
wxImage image = bitmap.ConvertToImage();
image.SetMaskColour(Background_Color[0], Background_Color[1], Background_Color[2]);
// prepare buffer
m_data.assign(4 * m_tex_width * m_tex_height, 0);
for (unsigned int h = 0; h < m_tex_height; ++h)
2018-01-16 13:59:06 +00:00
{
unsigned int hh = h * m_tex_width;
unsigned char* px_ptr = m_data.data() + 4 * hh;
for (unsigned int w = 0; w < m_tex_width; ++w)
{
*px_ptr++ = image.GetRed(w, h);
*px_ptr++ = image.GetGreen(w, h);
*px_ptr++ = image.GetBlue(w, h);
*px_ptr++ = image.IsTransparent(w, h) ? 0 : Opacity;
}
2018-01-16 13:59:06 +00:00
}
}
return true;
}
2018-05-09 08:47:04 +00:00
//##################################################################################################################
void _3DScene::init_gl()
{
s_canvas_mgr.init_gl();
}
2018-06-04 08:14:09 +00:00
std::string _3DScene::get_gl_info(bool format_as_html, bool extensions)
{
return s_canvas_mgr.get_gl_info(format_as_html, extensions);
}
2018-05-09 08:47:04 +00:00
bool _3DScene::use_VBOs()
{
return s_canvas_mgr.use_VBOs();
}
bool _3DScene::add_canvas(wxGLCanvas* canvas, wxGLContext* context)
{
std::cout << "_3DScene::add_canvas()" << std::endl;
return s_canvas_mgr.add(canvas, context);
}
bool _3DScene::remove_canvas(wxGLCanvas* canvas)
{
std::cout << "_3DScene::remove_canvas()" << std::endl;
return s_canvas_mgr.remove(canvas);
}
void _3DScene::remove_all_canvases()
{
std::cout << "_3DScene::remove_all_canvases()" << std::endl;
std::cout << "# canvases not yet released: " << s_canvas_mgr.count() << std::endl;
s_canvas_mgr.remove_all();
}
bool _3DScene::init(wxGLCanvas* canvas)
2018-05-14 12:14:19 +00:00
{
return s_canvas_mgr.init(canvas);
2018-05-14 12:14:19 +00:00
}
bool _3DScene::is_shown_on_screen(wxGLCanvas* canvas)
{
return s_canvas_mgr.is_shown_on_screen(canvas);
}
2018-06-11 11:48:02 +00:00
unsigned int _3DScene::get_volumes_count(wxGLCanvas* canvas)
2018-05-14 12:14:19 +00:00
{
2018-06-11 11:48:02 +00:00
return s_canvas_mgr.get_volumes_count(canvas);
2018-05-14 12:14:19 +00:00
}
void _3DScene::reset_volumes(wxGLCanvas* canvas)
{
s_canvas_mgr.reset_volumes(canvas);
}
void _3DScene::deselect_volumes(wxGLCanvas* canvas)
{
s_canvas_mgr.deselect_volumes(canvas);
}
void _3DScene::select_volume(wxGLCanvas* canvas, unsigned int id)
{
s_canvas_mgr.select_volume(canvas, id);
}
void _3DScene::update_volumes_selection(wxGLCanvas* canvas, const std::vector<int>& selections)
{
s_canvas_mgr.update_volumes_selection(canvas, selections);
}
2018-06-11 11:48:02 +00:00
bool _3DScene::check_volumes_outside_state(wxGLCanvas* canvas, const DynamicPrintConfig* config)
{
return s_canvas_mgr.check_volumes_outside_state(canvas, config);
}
bool _3DScene::move_volume_up(wxGLCanvas* canvas, unsigned int id)
{
return s_canvas_mgr.move_volume_up(canvas, id);
}
bool _3DScene::move_volume_down(wxGLCanvas* canvas, unsigned int id)
{
return s_canvas_mgr.move_volume_down(canvas, id);
}
void _3DScene::set_objects_selections(wxGLCanvas* canvas, const std::vector<int>& selections)
{
s_canvas_mgr.set_objects_selections(canvas, selections);
}
2018-05-28 13:23:01 +00:00
void _3DScene::set_config(wxGLCanvas* canvas, DynamicPrintConfig* config)
2018-05-23 09:14:49 +00:00
{
2018-05-28 13:23:01 +00:00
s_canvas_mgr.set_config(canvas, config);
2018-05-23 09:14:49 +00:00
}
2018-05-28 13:23:01 +00:00
void _3DScene::set_print(wxGLCanvas* canvas, Print* print)
2018-05-23 09:14:49 +00:00
{
2018-05-28 13:23:01 +00:00
s_canvas_mgr.set_print(canvas, print);
2018-05-23 09:14:49 +00:00
}
2018-06-07 09:18:28 +00:00
void _3DScene::set_model(wxGLCanvas* canvas, Model* model)
{
s_canvas_mgr.set_model(canvas, model);
}
2018-05-14 12:14:19 +00:00
void _3DScene::set_bed_shape(wxGLCanvas* canvas, const Pointfs& shape)
{
return s_canvas_mgr.set_bed_shape(canvas, shape);
}
2018-05-15 13:38:25 +00:00
void _3DScene::set_auto_bed_shape(wxGLCanvas* canvas)
{
return s_canvas_mgr.set_auto_bed_shape(canvas);
}
2018-05-15 08:32:38 +00:00
BoundingBoxf3 _3DScene::get_volumes_bounding_box(wxGLCanvas* canvas)
{
return s_canvas_mgr.get_volumes_bounding_box(canvas);
}
2018-05-18 11:02:47 +00:00
void _3DScene::set_axes_length(wxGLCanvas* canvas, float length)
{
s_canvas_mgr.set_axes_length(canvas, length);
}
2018-05-18 09:05:48 +00:00
void _3DScene::set_cutting_plane(wxGLCanvas* canvas, float z, const ExPolygons& polygons)
{
return s_canvas_mgr.set_cutting_plane(canvas, z, polygons);
}
2018-06-06 10:36:52 +00:00
void _3DScene::set_color_by(wxGLCanvas* canvas, const std::string& value)
{
return s_canvas_mgr.set_color_by(canvas, value);
}
void _3DScene::set_select_by(wxGLCanvas* canvas, const std::string& value)
{
return s_canvas_mgr.set_select_by(canvas, value);
}
void _3DScene::set_drag_by(wxGLCanvas* canvas, const std::string& value)
{
return s_canvas_mgr.set_drag_by(canvas, value);
}
bool _3DScene::is_layers_editing_enabled(wxGLCanvas* canvas)
{
return s_canvas_mgr.is_layers_editing_enabled(canvas);
}
2018-05-09 08:47:04 +00:00
bool _3DScene::is_layers_editing_allowed(wxGLCanvas* canvas)
{
return s_canvas_mgr.is_layers_editing_allowed(canvas);
}
bool _3DScene::is_shader_enabled(wxGLCanvas* canvas)
{
return s_canvas_mgr.is_shader_enabled(canvas);
}
bool _3DScene::is_reload_delayed(wxGLCanvas* canvas)
{
return s_canvas_mgr.is_reload_delayed(canvas);
}
2018-05-25 12:05:08 +00:00
void _3DScene::enable_layers_editing(wxGLCanvas* canvas, bool enable)
2018-05-23 13:35:11 +00:00
{
2018-05-25 12:05:08 +00:00
s_canvas_mgr.enable_layers_editing(canvas, enable);
2018-05-23 13:35:11 +00:00
}
2018-05-21 12:40:09 +00:00
void _3DScene::enable_warning_texture(wxGLCanvas* canvas, bool enable)
{
s_canvas_mgr.enable_warning_texture(canvas, enable);
}
2018-05-21 12:57:43 +00:00
void _3DScene::enable_legend_texture(wxGLCanvas* canvas, bool enable)
{
s_canvas_mgr.enable_legend_texture(canvas, enable);
}
void _3DScene::enable_picking(wxGLCanvas* canvas, bool enable)
{
s_canvas_mgr.enable_picking(canvas, enable);
}
void _3DScene::enable_moving(wxGLCanvas* canvas, bool enable)
{
s_canvas_mgr.enable_moving(canvas, enable);
}
2018-05-23 07:57:44 +00:00
void _3DScene::enable_shader(wxGLCanvas* canvas, bool enable)
{
s_canvas_mgr.enable_shader(canvas, enable);
}
2018-06-05 08:56:55 +00:00
void _3DScene::enable_force_zoom_to_bed(wxGLCanvas* canvas, bool enable)
{
s_canvas_mgr.enable_force_zoom_to_bed(canvas, enable);
}
2018-05-23 13:35:11 +00:00
void _3DScene::allow_multisample(wxGLCanvas* canvas, bool allow)
{
s_canvas_mgr.allow_multisample(canvas, allow);
}
2018-05-15 08:32:38 +00:00
void _3DScene::zoom_to_bed(wxGLCanvas* canvas)
{
s_canvas_mgr.zoom_to_bed(canvas);
}
void _3DScene::zoom_to_volumes(wxGLCanvas* canvas)
{
s_canvas_mgr.zoom_to_volumes(canvas);
}
void _3DScene::select_view(wxGLCanvas* canvas, const std::string& direction)
{
s_canvas_mgr.select_view(canvas, direction);
}
void _3DScene::set_viewport_from_scene(wxGLCanvas* canvas, wxGLCanvas* other)
{
s_canvas_mgr.set_viewport_from_scene(canvas, other);
}
void _3DScene::update_volumes_colors_by_extruder(wxGLCanvas* canvas)
{
s_canvas_mgr.update_volumes_colors_by_extruder(canvas);
}
void _3DScene::render(wxGLCanvas* canvas)
2018-05-23 13:35:11 +00:00
{
s_canvas_mgr.render(canvas);
2018-05-18 11:02:47 +00:00
}
std::vector<double> _3DScene::get_current_print_zs(wxGLCanvas* canvas, bool active_only)
{
return s_canvas_mgr.get_current_print_zs(canvas, active_only);
}
void _3DScene::set_toolpaths_range(wxGLCanvas* canvas, double low, double high)
{
s_canvas_mgr.set_toolpaths_range(canvas, low, high);
}
void _3DScene::register_on_viewport_changed_callback(wxGLCanvas* canvas, void* callback)
{
s_canvas_mgr.register_on_viewport_changed_callback(canvas, callback);
}
void _3DScene::register_on_double_click_callback(wxGLCanvas* canvas, void* callback)
{
s_canvas_mgr.register_on_double_click_callback(canvas, callback);
}
void _3DScene::register_on_right_click_callback(wxGLCanvas* canvas, void* callback)
{
s_canvas_mgr.register_on_right_click_callback(canvas, callback);
}
void _3DScene::register_on_select_object_callback(wxGLCanvas* canvas, void* callback)
{
s_canvas_mgr.register_on_select_object_callback(canvas, callback);
}
void _3DScene::register_on_model_update_callback(wxGLCanvas* canvas, void* callback)
{
s_canvas_mgr.register_on_model_update_callback(canvas, callback);
}
void _3DScene::register_on_remove_object_callback(wxGLCanvas* canvas, void* callback)
{
s_canvas_mgr.register_on_remove_object_callback(canvas, callback);
}
void _3DScene::register_on_arrange_callback(wxGLCanvas* canvas, void* callback)
{
s_canvas_mgr.register_on_arrange_callback(canvas, callback);
}
void _3DScene::register_on_rotate_object_left_callback(wxGLCanvas* canvas, void* callback)
{
s_canvas_mgr.register_on_rotate_object_left_callback(canvas, callback);
}
void _3DScene::register_on_rotate_object_right_callback(wxGLCanvas* canvas, void* callback)
{
s_canvas_mgr.register_on_rotate_object_right_callback(canvas, callback);
}
void _3DScene::register_on_scale_object_uniformly_callback(wxGLCanvas* canvas, void* callback)
{
s_canvas_mgr.register_on_scale_object_uniformly_callback(canvas, callback);
}
void _3DScene::register_on_increase_objects_callback(wxGLCanvas* canvas, void* callback)
{
s_canvas_mgr.register_on_increase_objects_callback(canvas, callback);
}
void _3DScene::register_on_decrease_objects_callback(wxGLCanvas* canvas, void* callback)
{
s_canvas_mgr.register_on_decrease_objects_callback(canvas, callback);
}
2018-06-07 09:18:28 +00:00
void _3DScene::register_on_instance_moved_callback(wxGLCanvas* canvas, void* callback)
{
s_canvas_mgr.register_on_instance_moved_callback(canvas, callback);
}
void _3DScene::register_on_wipe_tower_moved_callback(wxGLCanvas* canvas, void* callback)
{
s_canvas_mgr.register_on_wipe_tower_moved_callback(canvas, callback);
}
void _3DScene::register_on_enable_action_buttons_callback(wxGLCanvas* canvas, void* callback)
{
s_canvas_mgr.register_on_enable_action_buttons_callback(canvas, callback);
}
2018-05-09 08:47:04 +00:00
//void _3DScene::_glew_init()
//{
// glewInit();
//}
//##################################################################################################################
static inline int hex_digit_to_int(const char c)
{
return
(c >= '0' && c <= '9') ? int(c - '0') :
(c >= 'A' && c <= 'F') ? int(c - 'A') + 10 :
(c >= 'a' && c <= 'f') ? int(c - 'a') + 10 : -1;
}
static inline std::vector<float> parse_colors(const std::vector<std::string> &scolors)
{
std::vector<float> output(scolors.size() * 4, 1.f);
for (size_t i = 0; i < scolors.size(); ++ i) {
const std::string &scolor = scolors[i];
const char *c = scolor.data() + 1;
if (scolor.size() == 7 && scolor.front() == '#') {
for (size_t j = 0; j < 3; ++j) {
int digit1 = hex_digit_to_int(*c ++);
int digit2 = hex_digit_to_int(*c ++);
if (digit1 == -1 || digit2 == -1)
break;
output[i * 4 + j] = float(digit1 * 16 + digit2) / 255.f;
}
}
}
return output;
}
2018-06-05 08:56:55 +00:00
//##################################################################################################################
std::vector<int> _3DScene::load_object(wxGLCanvas* canvas, const ModelObject* model_object, int obj_idx, std::vector<int> instance_idxs)
{
return s_canvas_mgr.load_object(canvas, model_object, obj_idx, instance_idxs);
}
std::vector<int> _3DScene::load_object(wxGLCanvas* canvas, const Model* model, int obj_idx)
{
return s_canvas_mgr.load_object(canvas, model, obj_idx);
}
void _3DScene::reload_scene(wxGLCanvas* canvas, bool force)
{
s_canvas_mgr.reload_scene(canvas, force);
}
void _3DScene::load_print_toolpaths(wxGLCanvas* canvas)
{
s_canvas_mgr.load_print_toolpaths(canvas);
}
void _3DScene::load_print_object_toolpaths(wxGLCanvas* canvas, const PrintObject* print_object, const std::vector<std::string>& str_tool_colors)
{
s_canvas_mgr.load_print_object_toolpaths(canvas, print_object, str_tool_colors);
}
void _3DScene::load_wipe_tower_toolpaths(wxGLCanvas* canvas, const std::vector<std::string>& str_tool_colors)
{
s_canvas_mgr.load_wipe_tower_toolpaths(canvas, str_tool_colors);
}
2018-06-05 08:56:55 +00:00
void _3DScene::load_gcode_preview(wxGLCanvas* canvas, const GCodePreviewData* preview_data, const std::vector<std::string>& str_tool_colors)
{
s_canvas_mgr.load_gcode_preview(canvas, preview_data, str_tool_colors);
}
//void _3DScene::load_gcode_preview(const Print* print, const GCodePreviewData* preview_data, GLVolumeCollection* volumes, const std::vector<std::string>& str_tool_colors, bool use_VBOs)
//{
// if ((preview_data == nullptr) || (volumes == nullptr))
// return;
//
// if (volumes->empty())
// {
// std::vector<float> tool_colors = parse_colors(str_tool_colors);
//
// s_gcode_preview_volume_index.reset();
//
// _load_gcode_extrusion_paths(*preview_data, *volumes, tool_colors, use_VBOs);
// _load_gcode_travel_paths(*preview_data, *volumes, tool_colors, use_VBOs);
// _load_gcode_retractions(*preview_data, *volumes, use_VBOs);
// _load_gcode_unretractions(*preview_data, *volumes, use_VBOs);
//
// if (volumes->empty())
// reset_legend_texture();
// else
// {
// _generate_legend_texture(*preview_data, tool_colors);
//
// // removes empty volumes
// volumes->volumes.erase(std::remove_if(volumes->volumes.begin(), volumes->volumes.end(),
// [](const GLVolume *volume) { return volume->print_zs.empty(); }),
// volumes->volumes.end());
//
// _load_shells(*print, *volumes, use_VBOs);
// }
// }
//
// _update_gcode_volumes_visibility(*preview_data, *volumes);
//}
//##################################################################################################################
2018-06-05 08:56:55 +00:00
//##################################################################################################################
void _3DScene::generate_legend_texture(const GCodePreviewData& preview_data, const std::vector<float>& tool_colors)
{
s_legend_texture.generate(preview_data, tool_colors);
}
2018-06-05 08:56:55 +00:00
//##################################################################################################################
2018-01-16 13:59:06 +00:00
unsigned int _3DScene::get_legend_texture_width()
{
return s_legend_texture.get_texture_width();
}
unsigned int _3DScene::get_legend_texture_height()
{
return s_legend_texture.get_texture_height();
}
void _3DScene::reset_legend_texture()
{
s_legend_texture.reset_texture();
}
2018-03-09 09:40:42 +00:00
unsigned int _3DScene::finalize_legend_texture()
{
return s_legend_texture.finalize();
}
unsigned int _3DScene::get_warning_texture_width()
{
return s_warning_texture.get_texture_width();
}
unsigned int _3DScene::get_warning_texture_height()
{
return s_warning_texture.get_texture_height();
}
void _3DScene::generate_warning_texture(const std::string& msg)
{
s_warning_texture.generate(msg);
}
void _3DScene::reset_warning_texture()
{
s_warning_texture.reset_texture();
}
unsigned int _3DScene::finalize_warning_texture()
{
return s_warning_texture.finalize();
}
2018-06-05 08:56:55 +00:00
//##################################################################################################################
//// Create 3D thick extrusion lines for a skirt and brim.
//// Adds a new Slic3r::GUI::3DScene::Volume to volumes.
//void _3DScene::_load_print_toolpaths(
// const Print *print,
// GLVolumeCollection *volumes,
// const std::vector<std::string> &tool_colors,
// bool use_VBOs)
//{
// if (!print->has_skirt() && print->config.brim_width.value == 0)
// return;
//
// const float color[] = { 0.5f, 1.0f, 0.5f, 1.f }; // greenish
//
// // number of skirt layers
// size_t total_layer_count = 0;
// for (const PrintObject *print_object : print->objects)
// total_layer_count = std::max(total_layer_count, print_object->total_layer_count());
// size_t skirt_height = print->has_infinite_skirt() ?
// total_layer_count :
// std::min<size_t>(print->config.skirt_height.value, total_layer_count);
// if (skirt_height == 0 && print->config.brim_width.value > 0)
// skirt_height = 1;
//
// // get first skirt_height layers (maybe this should be moved to a PrintObject method?)
// const PrintObject *object0 = print->objects.front();
// std::vector<float> print_zs;
// print_zs.reserve(skirt_height * 2);
// for (size_t i = 0; i < std::min(skirt_height, object0->layers.size()); ++ i)
// print_zs.push_back(float(object0->layers[i]->print_z));
// //FIXME why there are support layers?
// for (size_t i = 0; i < std::min(skirt_height, object0->support_layers.size()); ++ i)
// print_zs.push_back(float(object0->support_layers[i]->print_z));
// sort_remove_duplicates(print_zs);
// if (print_zs.size() > skirt_height)
// print_zs.erase(print_zs.begin() + skirt_height, print_zs.end());
//
// volumes->volumes.emplace_back(new GLVolume(color));
// GLVolume &volume = *volumes->volumes.back();
// for (size_t i = 0; i < skirt_height; ++ i) {
// volume.print_zs.push_back(print_zs[i]);
// volume.offsets.push_back(volume.indexed_vertex_array.quad_indices.size());
// volume.offsets.push_back(volume.indexed_vertex_array.triangle_indices.size());
// if (i == 0)
// extrusionentity_to_verts(print->brim, print_zs[i], Point(0, 0), volume);
// extrusionentity_to_verts(print->skirt, print_zs[i], Point(0, 0), volume);
// }
// volume.bounding_box = volume.indexed_vertex_array.bounding_box();
// volume.indexed_vertex_array.finalize_geometry(use_VBOs);
//}
//
//// Create 3D thick extrusion lines for object forming extrusions.
//// Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes,
//// one for perimeters, one for infill and one for supports.
//void _3DScene::_load_print_object_toolpaths(
// const PrintObject *print_object,
// GLVolumeCollection *volumes,
// const std::vector<std::string> &tool_colors_str,
// bool use_VBOs)
//{
// std::vector<float> tool_colors = parse_colors(tool_colors_str);
//
// struct Ctxt
// {
// const Points *shifted_copies;
// std::vector<const Layer*> layers;
// bool has_perimeters;
// bool has_infill;
// bool has_support;
// const std::vector<float>* tool_colors;
//
// // Number of vertices (each vertex is 6x4=24 bytes long)
// static const size_t alloc_size_max () { return 131072; } // 3.15MB
//// static const size_t alloc_size_max () { return 65536; } // 1.57MB
//// static const size_t alloc_size_max () { return 32768; } // 786kB
// static const size_t alloc_size_reserve() { return alloc_size_max() * 2; }
//
// static const float* color_perimeters () { static float color[4] = { 1.0f, 1.0f, 0.0f, 1.f }; return color; } // yellow
// static const float* color_infill () { static float color[4] = { 1.0f, 0.5f, 0.5f, 1.f }; return color; } // redish
// static const float* color_support () { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish
//
// // For cloring by a tool, return a parsed color.
// bool color_by_tool() const { return tool_colors != nullptr; }
// size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; }
// const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; }
// int volume_idx(int extruder, int feature) const
// { return this->color_by_tool() ? std::min<int>(this->number_tools() - 1, std::max<int>(extruder - 1, 0)) : feature; }
// } ctxt;
//
// ctxt.shifted_copies = &print_object->_shifted_copies;
//
// // order layers by print_z
// ctxt.layers.reserve(print_object->layers.size() + print_object->support_layers.size());
// for (const Layer *layer : print_object->layers)
// ctxt.layers.push_back(layer);
// for (const Layer *layer : print_object->support_layers)
// ctxt.layers.push_back(layer);
// std::sort(ctxt.layers.begin(), ctxt.layers.end(), [](const Layer *l1, const Layer *l2) { return l1->print_z < l2->print_z; });
//
// // Maximum size of an allocation block: 32MB / sizeof(float)
// ctxt.has_perimeters = print_object->state.is_done(posPerimeters);
// ctxt.has_infill = print_object->state.is_done(posInfill);
// ctxt.has_support = print_object->state.is_done(posSupportMaterial);
// ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors;
//
// BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - start";
//
// //FIXME Improve the heuristics for a grain size.
// size_t grain_size = std::max(ctxt.layers.size() / 16, size_t(1));
// tbb::spin_mutex new_volume_mutex;
// auto new_volume = [volumes, &new_volume_mutex](const float *color) -> GLVolume* {
// auto *volume = new GLVolume(color);
// new_volume_mutex.lock();
// volume->outside_printer_detection_enabled = false;
// volumes->volumes.emplace_back(volume);
// new_volume_mutex.unlock();
// return volume;
// };
// const size_t volumes_cnt_initial = volumes->volumes.size();
// std::vector<GLVolumeCollection> volumes_per_thread(ctxt.layers.size());
// tbb::parallel_for(
// tbb::blocked_range<size_t>(0, ctxt.layers.size(), grain_size),
// [&ctxt, &new_volume](const tbb::blocked_range<size_t>& range) {
// std::vector<GLVolume*> vols;
// if (ctxt.color_by_tool()) {
// for (size_t i = 0; i < ctxt.number_tools(); ++ i)
// vols.emplace_back(new_volume(ctxt.color_tool(i)));
// } else
// vols = { new_volume(ctxt.color_perimeters()), new_volume(ctxt.color_infill()), new_volume(ctxt.color_support()) };
// for (GLVolume *vol : vols)
// vol->indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
// for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
// const Layer *layer = ctxt.layers[idx_layer];
// for (size_t i = 0; i < vols.size(); ++ i) {
// GLVolume &vol = *vols[i];
// if (vol.print_zs.empty() || vol.print_zs.back() != layer->print_z) {
// vol.print_zs.push_back(layer->print_z);
// vol.offsets.push_back(vol.indexed_vertex_array.quad_indices.size());
// vol.offsets.push_back(vol.indexed_vertex_array.triangle_indices.size());
// }
// }
// for (const Point &copy: *ctxt.shifted_copies) {
// for (const LayerRegion *layerm : layer->regions) {
// if (ctxt.has_perimeters)
// extrusionentity_to_verts(layerm->perimeters, float(layer->print_z), copy,
// *vols[ctxt.volume_idx(layerm->region()->config.perimeter_extruder.value, 0)]);
// if (ctxt.has_infill) {
// for (const ExtrusionEntity *ee : layerm->fills.entities) {
// // fill represents infill extrusions of a single island.
// const auto *fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
// if (! fill->entities.empty())
// extrusionentity_to_verts(*fill, float(layer->print_z), copy,
// *vols[ctxt.volume_idx(
// is_solid_infill(fill->entities.front()->role()) ?
// layerm->region()->config.solid_infill_extruder :
// layerm->region()->config.infill_extruder,
// 1)]);
// }
// }
// }
// if (ctxt.has_support) {
// const SupportLayer *support_layer = dynamic_cast<const SupportLayer*>(layer);
// if (support_layer) {
// for (const ExtrusionEntity *extrusion_entity : support_layer->support_fills.entities)
// extrusionentity_to_verts(extrusion_entity, float(layer->print_z), copy,
// *vols[ctxt.volume_idx(
// (extrusion_entity->role() == erSupportMaterial) ?
// support_layer->object()->config.support_material_extruder :
// support_layer->object()->config.support_material_interface_extruder,
// 2)]);
// }
// }
// }
// for (size_t i = 0; i < vols.size(); ++ i) {
// GLVolume &vol = *vols[i];
// if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() / 6 > ctxt.alloc_size_max()) {
// // Store the vertex arrays and restart their containers,
// vols[i] = new_volume(vol.color);
// GLVolume &vol_new = *vols[i];
// // Assign the large pre-allocated buffers to the new GLVolume.
// vol_new.indexed_vertex_array = std::move(vol.indexed_vertex_array);
// // Copy the content back to the old GLVolume.
// vol.indexed_vertex_array = vol_new.indexed_vertex_array;
// // Finalize a bounding box of the old GLVolume.
// vol.bounding_box = vol.indexed_vertex_array.bounding_box();
// // Clear the buffers, but keep them pre-allocated.
// vol_new.indexed_vertex_array.clear();
// // Just make sure that clear did not clear the reserved memory.
// vol_new.indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
// }
// }
// }
// for (GLVolume *vol : vols) {
// vol->bounding_box = vol->indexed_vertex_array.bounding_box();
// vol->indexed_vertex_array.shrink_to_fit();
// }
// });
//
// BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - finalizing results";
// // Remove empty volumes from the newly added volumes.
// volumes->volumes.erase(
// std::remove_if(volumes->volumes.begin() + volumes_cnt_initial, volumes->volumes.end(),
// [](const GLVolume *volume) { return volume->empty(); }),
// volumes->volumes.end());
// for (size_t i = volumes_cnt_initial; i < volumes->volumes.size(); ++ i)
// volumes->volumes[i]->indexed_vertex_array.finalize_geometry(use_VBOs);
//
// BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - end";
//}
//
//void _3DScene::_load_wipe_tower_toolpaths(
// const Print *print,
// GLVolumeCollection *volumes,
// const std::vector<std::string> &tool_colors_str,
// bool use_VBOs)
//{
// if (print->m_wipe_tower_tool_changes.empty())
// return;
//
// std::vector<float> tool_colors = parse_colors(tool_colors_str);
//
// struct Ctxt
// {
// const Print *print;
// const std::vector<float> *tool_colors;
//
// // Number of vertices (each vertex is 6x4=24 bytes long)
// static const size_t alloc_size_max () { return 131072; } // 3.15MB
// static const size_t alloc_size_reserve() { return alloc_size_max() * 2; }
//
// static const float* color_support () { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish
//
// // For cloring by a tool, return a parsed color.
// bool color_by_tool() const { return tool_colors != nullptr; }
// size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; }
// const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; }
// int volume_idx(int tool, int feature) const
// { return this->color_by_tool() ? std::min<int>(this->number_tools() - 1, std::max<int>(tool, 0)) : feature; }
//
// const std::vector<WipeTower::ToolChangeResult>& tool_change(size_t idx) {
// return priming.empty() ?
// ((idx == print->m_wipe_tower_tool_changes.size()) ? final : print->m_wipe_tower_tool_changes[idx]) :
// ((idx == 0) ? priming : (idx == print->m_wipe_tower_tool_changes.size() + 1) ? final : print->m_wipe_tower_tool_changes[idx - 1]);
// }
// std::vector<WipeTower::ToolChangeResult> priming;
// std::vector<WipeTower::ToolChangeResult> final;
// } ctxt;
//
// ctxt.print = print;
// ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors;
// if (print->m_wipe_tower_priming)
// ctxt.priming.emplace_back(*print->m_wipe_tower_priming.get());
// if (print->m_wipe_tower_final_purge)
// ctxt.final.emplace_back(*print->m_wipe_tower_final_purge.get());
//
// BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - start";
//
// //FIXME Improve the heuristics for a grain size.
// size_t n_items = print->m_wipe_tower_tool_changes.size() + (ctxt.priming.empty() ? 0 : 1);
// size_t grain_size = std::max(n_items / 128, size_t(1));
// tbb::spin_mutex new_volume_mutex;
// auto new_volume = [volumes, &new_volume_mutex](const float *color) -> GLVolume* {
// auto *volume = new GLVolume(color);
// new_volume_mutex.lock();
// volume->outside_printer_detection_enabled = false;
// volumes->volumes.emplace_back(volume);
// new_volume_mutex.unlock();
// return volume;
// };
// const size_t volumes_cnt_initial = volumes->volumes.size();
// std::vector<GLVolumeCollection> volumes_per_thread(n_items);
// tbb::parallel_for(
// tbb::blocked_range<size_t>(0, n_items, grain_size),
// [&ctxt, &new_volume](const tbb::blocked_range<size_t>& range) {
// // Bounding box of this slab of a wipe tower.
// std::vector<GLVolume*> vols;
// if (ctxt.color_by_tool()) {
// for (size_t i = 0; i < ctxt.number_tools(); ++ i)
// vols.emplace_back(new_volume(ctxt.color_tool(i)));
// } else
// vols = { new_volume(ctxt.color_support()) };
// for (GLVolume *volume : vols)
// volume->indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
// for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
// const std::vector<WipeTower::ToolChangeResult> &layer = ctxt.tool_change(idx_layer);
// for (size_t i = 0; i < vols.size(); ++ i) {
// GLVolume &vol = *vols[i];
// if (vol.print_zs.empty() || vol.print_zs.back() != layer.front().print_z) {
// vol.print_zs.push_back(layer.front().print_z);
// vol.offsets.push_back(vol.indexed_vertex_array.quad_indices.size());
// vol.offsets.push_back(vol.indexed_vertex_array.triangle_indices.size());
// }
// }
// for (const WipeTower::ToolChangeResult &extrusions : layer) {
// for (size_t i = 1; i < extrusions.extrusions.size();) {
// const WipeTower::Extrusion &e = extrusions.extrusions[i];
// if (e.width == 0.) {
// ++ i;
// continue;
// }
// size_t j = i + 1;
// if (ctxt.color_by_tool())
// for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].tool == e.tool && extrusions.extrusions[j].width > 0.f; ++ j) ;
// else
// for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].width > 0.f; ++ j) ;
// size_t n_lines = j - i;
// Lines lines;
// std::vector<double> widths;
// std::vector<double> heights;
// lines.reserve(n_lines);
// widths.reserve(n_lines);
// heights.assign(n_lines, extrusions.layer_height);
// for (; i < j; ++ i) {
// const WipeTower::Extrusion &e = extrusions.extrusions[i];
// assert(e.width > 0.f);
// const WipeTower::Extrusion &e_prev = *(&e - 1);
// lines.emplace_back(Point::new_scale(e_prev.pos.x, e_prev.pos.y), Point::new_scale(e.pos.x, e.pos.y));
// widths.emplace_back(e.width);
// }
// thick_lines_to_verts(lines, widths, heights, lines.front().a == lines.back().b, extrusions.print_z,
// *vols[ctxt.volume_idx(e.tool, 0)]);
// }
// }
// }
// for (size_t i = 0; i < vols.size(); ++ i) {
// GLVolume &vol = *vols[i];
// if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() / 6 > ctxt.alloc_size_max()) {
// // Store the vertex arrays and restart their containers,
// vols[i] = new_volume(vol.color);
// GLVolume &vol_new = *vols[i];
// // Assign the large pre-allocated buffers to the new GLVolume.
// vol_new.indexed_vertex_array = std::move(vol.indexed_vertex_array);
// // Copy the content back to the old GLVolume.
// vol.indexed_vertex_array = vol_new.indexed_vertex_array;
// // Finalize a bounding box of the old GLVolume.
// vol.bounding_box = vol.indexed_vertex_array.bounding_box();
// // Clear the buffers, but keep them pre-allocated.
// vol_new.indexed_vertex_array.clear();
// // Just make sure that clear did not clear the reserved memory.
// vol_new.indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
// }
// }
// for (GLVolume *vol : vols) {
// vol->bounding_box = vol->indexed_vertex_array.bounding_box();
// vol->indexed_vertex_array.shrink_to_fit();
// }
// });
//
// BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - finalizing results";
// // Remove empty volumes from the newly added volumes.
// volumes->volumes.erase(
// std::remove_if(volumes->volumes.begin() + volumes_cnt_initial, volumes->volumes.end(),
// [](const GLVolume *volume) { return volume->empty(); }),
// volumes->volumes.end());
// for (size_t i = volumes_cnt_initial; i < volumes->volumes.size(); ++ i)
// volumes->volumes[i]->indexed_vertex_array.finalize_geometry(use_VBOs);
//
// BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - end";
//}
//
2018-06-05 08:56:55 +00:00
//void _3DScene::_load_gcode_extrusion_paths(const GCodePreviewData& preview_data, GLVolumeCollection& volumes, const std::vector<float>& tool_colors, bool use_VBOs)
//{
// // helper functions to select data in dependence of the extrusion view type
// struct Helper
// {
// static float path_filter(GCodePreviewData::Extrusion::EViewType type, const ExtrusionPath& path)
// {
// switch (type)
// {
// case GCodePreviewData::Extrusion::FeatureType:
// return (float)path.role();
// case GCodePreviewData::Extrusion::Height:
// return path.height;
// case GCodePreviewData::Extrusion::Width:
// return path.width;
// case GCodePreviewData::Extrusion::Feedrate:
// return path.feedrate;
// case GCodePreviewData::Extrusion::VolumetricRate:
// return path.feedrate * (float)path.mm3_per_mm;
// case GCodePreviewData::Extrusion::Tool:
// return (float)path.extruder_id;
// }
//
// return 0.0f;
// }
//
// static GCodePreviewData::Color path_color(const GCodePreviewData& data, const std::vector<float>& tool_colors, float value)
// {
// switch (data.extrusion.view_type)
// {
// case GCodePreviewData::Extrusion::FeatureType:
// return data.get_extrusion_role_color((ExtrusionRole)(int)value);
// case GCodePreviewData::Extrusion::Height:
// return data.get_height_color(value);
// case GCodePreviewData::Extrusion::Width:
// return data.get_width_color(value);
// case GCodePreviewData::Extrusion::Feedrate:
// return data.get_feedrate_color(value);
// case GCodePreviewData::Extrusion::VolumetricRate:
// return data.get_volumetric_rate_color(value);
// case GCodePreviewData::Extrusion::Tool:
// {
// GCodePreviewData::Color color;
// ::memcpy((void*)color.rgba, (const void*)(tool_colors.data() + (unsigned int)value * 4), 4 * sizeof(float));
// return color;
// }
// }
//
// return GCodePreviewData::Color::Dummy;
// }
// };
//
// // Helper structure for filters
// struct Filter
// {
// float value;
// ExtrusionRole role;
// GLVolume* volume;
//
// Filter(float value, ExtrusionRole role)
// : value(value)
// , role(role)
// , volume(nullptr)
// {
// }
//
// bool operator == (const Filter& other) const
// {
// if (value != other.value)
// return false;
//
// if (role != other.role)
// return false;
//
// return true;
// }
// };
//
// typedef std::vector<Filter> FiltersList;
// size_t initial_volumes_count = volumes.volumes.size();
//
// // detects filters
// FiltersList filters;
// for (const GCodePreviewData::Extrusion::Layer& layer : preview_data.extrusion.layers)
// {
// for (const ExtrusionPath& path : layer.paths)
// {
// ExtrusionRole role = path.role();
// float path_filter = Helper::path_filter(preview_data.extrusion.view_type, path);
// if (std::find(filters.begin(), filters.end(), Filter(path_filter, role)) == filters.end())
// filters.emplace_back(path_filter, role);
// }
// }
//
// // nothing to render, return
// if (filters.empty())
// return;
//
// // creates a new volume for each filter
// for (Filter& filter : filters)
// {
// s_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Extrusion, (unsigned int)filter.role, (unsigned int)volumes.volumes.size());
// GLVolume* volume = new GLVolume(Helper::path_color(preview_data, tool_colors, filter.value).rgba);
// if (volume != nullptr)
// {
// filter.volume = volume;
// volumes.volumes.emplace_back(volume);
// }
// else
// {
// // an error occourred - restore to previous state and return
// s_gcode_preview_volume_index.first_volumes.pop_back();
// if (initial_volumes_count != volumes.volumes.size())
// {
// std::vector<GLVolume*>::iterator begin = volumes.volumes.begin() + initial_volumes_count;
// std::vector<GLVolume*>::iterator end = volumes.volumes.end();
// for (std::vector<GLVolume*>::iterator it = begin; it < end; ++it)
// {
// GLVolume* volume = *it;
// delete volume;
// }
// volumes.volumes.erase(begin, end);
// return;
// }
// }
// }
//
// // populates volumes
// for (const GCodePreviewData::Extrusion::Layer& layer : preview_data.extrusion.layers)
// {
// for (const ExtrusionPath& path : layer.paths)
// {
// float path_filter = Helper::path_filter(preview_data.extrusion.view_type, path);
// FiltersList::iterator filter = std::find(filters.begin(), filters.end(), Filter(path_filter, path.role()));
// if (filter != filters.end())
// {
// filter->volume->print_zs.push_back(layer.z);
// filter->volume->offsets.push_back(filter->volume->indexed_vertex_array.quad_indices.size());
// filter->volume->offsets.push_back(filter->volume->indexed_vertex_array.triangle_indices.size());
//
// extrusionentity_to_verts(path, layer.z, *filter->volume);
// }
// }
// }
//
// // finalize volumes and sends geometry to gpu
// if (volumes.volumes.size() > initial_volumes_count)
// {
// for (size_t i = initial_volumes_count; i < volumes.volumes.size(); ++i)
// {
// GLVolume* volume = volumes.volumes[i];
// volume->bounding_box = volume->indexed_vertex_array.bounding_box();
// volume->indexed_vertex_array.finalize_geometry(use_VBOs);
// }
// }
//}
//
//void _3DScene::_load_gcode_travel_paths(const GCodePreviewData& preview_data, GLVolumeCollection& volumes, const std::vector<float>& tool_colors, bool use_VBOs)
//{
// size_t initial_volumes_count = volumes.volumes.size();
// s_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Travel, 0, (unsigned int)initial_volumes_count);
//
// bool res = true;
// switch (preview_data.extrusion.view_type)
// {
// case GCodePreviewData::Extrusion::Feedrate:
// {
// res = _travel_paths_by_feedrate(preview_data, volumes);
// break;
// }
// case GCodePreviewData::Extrusion::Tool:
// {
// res = _travel_paths_by_tool(preview_data, volumes, tool_colors);
// break;
// }
// default:
// {
// res = _travel_paths_by_type(preview_data, volumes);
// break;
// }
// }
//
// if (!res)
// {
// // an error occourred - restore to previous state and return
// if (initial_volumes_count != volumes.volumes.size())
// {
// std::vector<GLVolume*>::iterator begin = volumes.volumes.begin() + initial_volumes_count;
// std::vector<GLVolume*>::iterator end = volumes.volumes.end();
// for (std::vector<GLVolume*>::iterator it = begin; it < end; ++it)
// {
// GLVolume* volume = *it;
// delete volume;
// }
// volumes.volumes.erase(begin, end);
// }
//
// return;
// }
//
// // finalize volumes and sends geometry to gpu
// if (volumes.volumes.size() > initial_volumes_count)
// {
// for (size_t i = initial_volumes_count; i < volumes.volumes.size(); ++i)
// {
// GLVolume* volume = volumes.volumes[i];
// volume->bounding_box = volume->indexed_vertex_array.bounding_box();
// volume->indexed_vertex_array.finalize_geometry(use_VBOs);
// }
// }
//}
//
//bool _3DScene::_travel_paths_by_type(const GCodePreviewData& preview_data, GLVolumeCollection& volumes)
//{
// // Helper structure for types
// struct Type
// {
// GCodePreviewData::Travel::EType value;
// GLVolume* volume;
//
// explicit Type(GCodePreviewData::Travel::EType value)
// : value(value)
// , volume(nullptr)
// {
// }
//
// bool operator == (const Type& other) const
// {
// return value == other.value;
// }
// };
//
// typedef std::vector<Type> TypesList;
//
// // colors travels by travel type
//
// // detects types
// TypesList types;
// for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
// {
// if (std::find(types.begin(), types.end(), Type(polyline.type)) == types.end())
// types.emplace_back(polyline.type);
// }
//
// // nothing to render, return
// if (types.empty())
// return true;
//
// // creates a new volume for each type
// for (Type& type : types)
// {
// GLVolume* volume = new GLVolume(preview_data.travel.type_colors[type.value].rgba);
// if (volume == nullptr)
// return false;
// else
// {
// type.volume = volume;
// volumes.volumes.emplace_back(volume);
// }
// }
//
// // populates volumes
// for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
// {
// TypesList::iterator type = std::find(types.begin(), types.end(), Type(polyline.type));
// if (type != types.end())
// {
// type->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min.z));
// type->volume->offsets.push_back(type->volume->indexed_vertex_array.quad_indices.size());
// type->volume->offsets.push_back(type->volume->indexed_vertex_array.triangle_indices.size());
//
// polyline3_to_verts(polyline.polyline, preview_data.travel.width, preview_data.travel.height, *type->volume);
// }
// }
//
// return true;
//}
//
//bool _3DScene::_travel_paths_by_feedrate(const GCodePreviewData& preview_data, GLVolumeCollection& volumes)
//{
// // Helper structure for feedrate
// struct Feedrate
// {
// float value;
// GLVolume* volume;
//
// explicit Feedrate(float value)
// : value(value)
// , volume(nullptr)
// {
// }
//
// bool operator == (const Feedrate& other) const
// {
// return value == other.value;
// }
// };
//
// typedef std::vector<Feedrate> FeedratesList;
//
// // colors travels by feedrate
//
// // detects feedrates
// FeedratesList feedrates;
// for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
// {
// if (std::find(feedrates.begin(), feedrates.end(), Feedrate(polyline.feedrate)) == feedrates.end())
// feedrates.emplace_back(polyline.feedrate);
// }
//
// // nothing to render, return
// if (feedrates.empty())
// return true;
//
// // creates a new volume for each feedrate
// for (Feedrate& feedrate : feedrates)
// {
// GLVolume* volume = new GLVolume(preview_data.get_feedrate_color(feedrate.value).rgba);
// if (volume == nullptr)
// return false;
// else
// {
// feedrate.volume = volume;
// volumes.volumes.emplace_back(volume);
// }
// }
//
// // populates volumes
// for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
// {
// FeedratesList::iterator feedrate = std::find(feedrates.begin(), feedrates.end(), Feedrate(polyline.feedrate));
// if (feedrate != feedrates.end())
// {
// feedrate->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min.z));
// feedrate->volume->offsets.push_back(feedrate->volume->indexed_vertex_array.quad_indices.size());
// feedrate->volume->offsets.push_back(feedrate->volume->indexed_vertex_array.triangle_indices.size());
//
// polyline3_to_verts(polyline.polyline, preview_data.travel.width, preview_data.travel.height, *feedrate->volume);
// }
// }
//
// return true;
//}
//
//bool _3DScene::_travel_paths_by_tool(const GCodePreviewData& preview_data, GLVolumeCollection& volumes, const std::vector<float>& tool_colors)
//{
// // Helper structure for tool
// struct Tool
// {
// unsigned int value;
// GLVolume* volume;
//
// explicit Tool(unsigned int value)
// : value(value)
// , volume(nullptr)
// {
// }
//
// bool operator == (const Tool& other) const
// {
// return value == other.value;
// }
// };
//
// typedef std::vector<Tool> ToolsList;
//
// // colors travels by tool
//
// // detects tools
// ToolsList tools;
// for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
// {
// if (std::find(tools.begin(), tools.end(), Tool(polyline.extruder_id)) == tools.end())
// tools.emplace_back(polyline.extruder_id);
// }
//
// // nothing to render, return
// if (tools.empty())
// return true;
//
// // creates a new volume for each tool
// for (Tool& tool : tools)
// {
// GLVolume* volume = new GLVolume(tool_colors.data() + tool.value * 4);
// if (volume == nullptr)
// return false;
// else
// {
// tool.volume = volume;
// volumes.volumes.emplace_back(volume);
// }
// }
//
// // populates volumes
// for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
// {
// ToolsList::iterator tool = std::find(tools.begin(), tools.end(), Tool(polyline.extruder_id));
// if (tool != tools.end())
// {
// tool->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min.z));
// tool->volume->offsets.push_back(tool->volume->indexed_vertex_array.quad_indices.size());
// tool->volume->offsets.push_back(tool->volume->indexed_vertex_array.triangle_indices.size());
//
// polyline3_to_verts(polyline.polyline, preview_data.travel.width, preview_data.travel.height, *tool->volume);
// }
// }
//
// return true;
//}
//
//void _3DScene::_load_gcode_retractions(const GCodePreviewData& preview_data, GLVolumeCollection& volumes, bool use_VBOs)
//{
// s_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Retraction, 0, (unsigned int)volumes.volumes.size());
//
// // nothing to render, return
// if (preview_data.retraction.positions.empty())
// return;
//
// GLVolume* volume = new GLVolume(preview_data.retraction.color.rgba);
// if (volume != nullptr)
// {
// volumes.volumes.emplace_back(volume);
//
// GCodePreviewData::Retraction::PositionsList copy(preview_data.retraction.positions);
// std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position.z < p2.position.z; });
//
// for (const GCodePreviewData::Retraction::Position& position : copy)
// {
// volume->print_zs.push_back(unscale(position.position.z));
// volume->offsets.push_back(volume->indexed_vertex_array.quad_indices.size());
// volume->offsets.push_back(volume->indexed_vertex_array.triangle_indices.size());
//
// point3_to_verts(position.position, position.width, position.height, *volume);
// }
//
// // finalize volumes and sends geometry to gpu
// volume->bounding_box = volume->indexed_vertex_array.bounding_box();
// volume->indexed_vertex_array.finalize_geometry(use_VBOs);
// }
//}
//
//void _3DScene::_load_gcode_unretractions(const GCodePreviewData& preview_data, GLVolumeCollection& volumes, bool use_VBOs)
//{
// s_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Unretraction, 0, (unsigned int)volumes.volumes.size());
//
// // nothing to render, return
// if (preview_data.unretraction.positions.empty())
// return;
//
// GLVolume* volume = new GLVolume(preview_data.unretraction.color.rgba);
// if (volume != nullptr)
// {
// volumes.volumes.emplace_back(volume);
//
// GCodePreviewData::Retraction::PositionsList copy(preview_data.unretraction.positions);
// std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position.z < p2.position.z; });
//
// for (const GCodePreviewData::Retraction::Position& position : copy)
// {
// volume->print_zs.push_back(unscale(position.position.z));
// volume->offsets.push_back(volume->indexed_vertex_array.quad_indices.size());
// volume->offsets.push_back(volume->indexed_vertex_array.triangle_indices.size());
//
// point3_to_verts(position.position, position.width, position.height, *volume);
// }
//
// // finalize volumes and sends geometry to gpu
// volume->bounding_box = volume->indexed_vertex_array.bounding_box();
// volume->indexed_vertex_array.finalize_geometry(use_VBOs);
// }
//}
//
//void _3DScene::_update_gcode_volumes_visibility(const GCodePreviewData& preview_data, GLVolumeCollection& volumes)
//{
// unsigned int size = (unsigned int)s_gcode_preview_volume_index.first_volumes.size();
// for (unsigned int i = 0; i < size; ++i)
// {
// std::vector<GLVolume*>::iterator begin = volumes.volumes.begin() + s_gcode_preview_volume_index.first_volumes[i].id;
// std::vector<GLVolume*>::iterator end = (i + 1 < size) ? volumes.volumes.begin() + s_gcode_preview_volume_index.first_volumes[i + 1].id : volumes.volumes.end();
//
// for (std::vector<GLVolume*>::iterator it = begin; it != end; ++it)
// {
// GLVolume* volume = *it;
// volume->outside_printer_detection_enabled = false;
//
// switch (s_gcode_preview_volume_index.first_volumes[i].type)
// {
// case GCodePreviewVolumeIndex::Extrusion:
// {
// if ((ExtrusionRole)s_gcode_preview_volume_index.first_volumes[i].flag == erCustom)
// volume->zoom_to_volumes = false;
//
// volume->is_active = preview_data.extrusion.is_role_flag_set((ExtrusionRole)s_gcode_preview_volume_index.first_volumes[i].flag);
// break;
// }
// case GCodePreviewVolumeIndex::Travel:
// {
// volume->is_active = preview_data.travel.is_visible;
// volume->zoom_to_volumes = false;
// break;
// }
// case GCodePreviewVolumeIndex::Retraction:
// {
// volume->is_active = preview_data.retraction.is_visible;
// volume->zoom_to_volumes = false;
// break;
// }
// case GCodePreviewVolumeIndex::Unretraction:
// {
// volume->is_active = preview_data.unretraction.is_visible;
// volume->zoom_to_volumes = false;
// break;
// }
// case GCodePreviewVolumeIndex::Shell:
// {
// volume->is_active = preview_data.shell.is_visible;
// volume->color[3] = 0.25f;
// volume->zoom_to_volumes = false;
// break;
// }
// default:
// {
// volume->is_active = false;
// volume->zoom_to_volumes = false;
// break;
// }
// }
// }
// }
//}
//
//void _3DScene::_generate_legend_texture(const GCodePreviewData& preview_data, const std::vector<float>& tool_colors)
//{
// s_legend_texture.generate(preview_data, tool_colors);
//}
//
//void _3DScene::_load_shells(const Print& print, GLVolumeCollection& volumes, bool use_VBOs)
//{
// size_t initial_volumes_count = volumes.volumes.size();
// s_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Shell, 0, (unsigned int)initial_volumes_count);
//
// if (print.objects.empty())
// // nothing to render, return
// return;
//
// // adds objects' volumes
// unsigned int object_id = 0;
// for (PrintObject* obj : print.objects)
// {
// ModelObject* model_obj = obj->model_object();
//
// std::vector<int> instance_ids(model_obj->instances.size());
// for (int i = 0; i < model_obj->instances.size(); ++i)
// {
// instance_ids[i] = i;
// }
//
// for (ModelInstance* instance : model_obj->instances)
// {
// volumes.load_object(model_obj, object_id, instance_ids, "object", "object", "object", use_VBOs);
// }
//
// ++object_id;
// }
//
// // adds wipe tower's volume
// coordf_t max_z = print.objects[0]->model_object()->get_model()->bounding_box().max.z;
// const PrintConfig& config = print.config;
// unsigned int extruders_count = config.nozzle_diameter.size();
// if ((extruders_count > 1) && config.single_extruder_multi_material && config.wipe_tower && !config.complete_objects) {
// const float width_per_extruder = 15.f; // a simple workaround after wipe_tower_per_color_wipe got obsolete
// volumes.load_wipe_tower_preview(1000, config.wipe_tower_x, config.wipe_tower_y, config.wipe_tower_width, width_per_extruder * (extruders_count - 1), max_z, config.wipe_tower_rotation_angle, use_VBOs);
// }
//}
//##################################################################################################################
} // namespace Slic3r